NASA Contractor Report 198506

Analysis of New Composite Architectures

John D. Whitcomb
Texas A&M University
College Station, Texas

July 1996

Prepared for
Lewis Research Center
Under Grant NAG3-1270

National Aeronautics and
Space Administration






ANALYSIS OF NEW COMPOSITE ARCHITECTURES

(Final Report NAG3-1270)

John D. Whitcomb

Center for Mechanics of Composites
Texas Engineering Experiment Station
The Texas A&M University System






Acknowledgement

This report documents the results and deliverables from NASA Grant NAG3-
1270, which began May 1, 1991 and ended August 31, 1995. The technical monitor was
Dr. Christos C. Chamis. Research results have also been published in journal articles

and conference proceedings papers.

The research was leveraged by research on related projects: "Failure Analysis of
2-D and 3-D Woven Composites” (funded by NASA Langley Research Center),
"Thermomechanical Analysis of Carbon-Carbon Composites” (funded by AFOSR) and
"Development of Numerical Models for Carbon-Carbon Composites” (funded by
AFOSR). The integration of the efforts in these projects expedited and complemented
the research in these four grant efforts.



Abstract

Efficient and accurate specialty finite elements methods to analyze textile compos-
ites were developed and are described. Textile composites present unique challenges to
the analyst because of the large, complex "microstructure”. The geometry of the
microstructure is difficult to model and it introduces unusual free surface effects. The
size of the microstructure complicates the use of traditional homogenization methods.
The methods developed constitute considerable progress in addressing the modeling
difficulties. The details of the methods and attended results obtained therefrom, are
described in the various chapters included in Part I of the report. Specific conclusions
and computer codes generated are included in Part II of the report.
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Chapter: 1

Macro Finite Element for Analysis
of Textile Composites

ABSTRACT : The analysis of textile composites is complicated by the complex micro-
structure. It 1s not practical 1o account for this microstructure directly using tradutional
finite elements. A new type of finite clement was developed 1o cfficiently account for
microstructure within a single element. These new elements, which are referred to herein
as macro elements, performed well in initial tests.

INTRODUCTION

T\\’O OF THE major obstacles to widespread use of laminated composites in
high performance primary structures are the low strengths normal to the
lamina and the labor intensive fabrication processes currently used. There has
been considerable research aimed at developing tougher resin systems to enhance
the through the thickness strength. Also, robotics are being developed to reduce
the labor costs. Of course, there remains the question of whether laminated con-
struction is the optimal form.

Several alternatives which are receiving attention are weaving, braiding, stitch-
ing, knitting, and combinations of these. These various forms are referred to as
textile composites. Approximate analyses have been developed for predicting
moduli, but these analyses are far too crude to predict details of the local stress
field (1-3]. Very little detailed three-dimensional analysis has been performed.
These studies, which used 3-D finite elements [4-8], required tedious modeling,
many simplifying assumptions about the material microstructure, and only con-
sidered very simple loading. The computational challenge is obvious when one
examines the schematic of a simple plain weave in Figure 1. The resin pockets are
removed to show the fiber tow architecture. This tiny piece of material, which is
only about .28 mm thick and about 1.4 mm wide, is in fact, a fairly complicated



structure. If four mats are stacked to obtain a thicker composite (still only about
L.l mm thick), it is obvious that the number of elements required becomes intol-
erable very quickly even for a coarse mesh (see Figure 2). A variationally consis-
tent and organizationally (and computationally) tolerable procedure is needed for
analyzing textile composites.

The objective of this paper is to describe a displacement based finite element
which accounts for the spatial variation of material properties within a single ele-
ment. This is in contrast to the usual choices of either adding more elements to
account for microstructure or using averaged material properties within each ele-
ment. The performance of this element is very similar to that in Reference [9),
but the formulation is totally different. The formulation of this new element will
be discussed first. Then several configurations will be analyzed to evaulate the
performance. For simplicity in the discussion, only two-dimensional configura-
tions will be considered. However, the approach is general and can be extended

easily to three dimensions.

THEORY

To simplify the discussion, a rectangular element with multiple layers of
materials will be discussed first. Such an clement might be used where the tows
are straight or for ordinary laminated composites when therc are too many
lamina to model cach individually. Then, microstructure of arbitrary shape will
be considered.

Consider the four node rectangular element in Figure 3 which contains three
lamina of composite material. To facilitate the following discussion, the element
will be referred to as a macro element and the subregions (lamina) will be refer-

red to as subelements. The displacement field within the macro element is
assumed to take the form

u(x,y) = N.(x,yu;

QY]
V(I'Y) = N.-(X, y)V.-

where N;(x, y) are interpolation functions and u; and v; are macro element nodal
displacements. In Equation (1) and subsequent equations Cartesian index notation
is used. In particular, a repeated subscript indicates summation. In Equation (1)
the summation is for the range i = 1 to 4 since there are four interpolation func-
tions for a four node element. The assumed displacement field is referred to
herein as single field because a single approximation is used through the entire
macro element. In contrast, a multi-field approximation would use approxima-

tions which are defined within a single subelemeat. The stiffness matrix can be
calculated using the familiar formula



K, = B..D..B.,dxdy (2)

where B, and D... are the strain-displacement and constitutive matrices, respec-
uvely. They arc defined by the following cquations

€. = B-iqi _;)
(:

0. = D..c.

where g; = list of the clement nodal displacements.

The complication that we have is that the constitutive matrix D... ts now a dis-
conuinuous function of position. However, because of the simple gcometry, one
can perform the required integrations in closed form for each subclement and add
the contributions. The details were described in Reference [7] for a four node ele-
ment. It was shown in Reference {10] that the closed form expressions for the K ;
are quite simple for a four node element.

Rectangular macro elements with rectangular subelements cannot accurately
model wavy regions like that shown in Figure 4. For such microstructure one
needs to use distorted subelements. In the more general case, such as when the
interface between woven mats is not straight, the macro element will also be dis-
torted. Figure 5 shows a distorted quadrilateral macro element with distorted
subelements. The large numbers (1-4) are the macro element node numbers. The
smaller numbers are the subelement node and element numbers. For simplicity
the resin pockets are not modeled.

To obtain a single field approximation, the subelement degrees of freedom
(dof) must be expressed in terms of the macro element dof. There are several
ways in which we can proceed. Two procedures will be discussed herein. Before

procceding 1t should be pomted oat that in geacral the stngle ficld character is
only exactly satisticd at the subelement nades. The fiest procedure is o consider
the subelement mesh o be an ordinary finite clement mesh. The only difference
ix that after the subelement stiflness matrix and equivalent aodal load vector are
determined, they are not numediately assembled, but are first trnsformed. This
transformation can be expressed in mataix notation as



K, = T.K..T,
(4)
F=T.F.,

where 7., is defined by g7 = T,..q. and

I

q: = nodal displacements for subelement
q.. = nodal displacements for macro clement
K. = suffness matrix for subelement
K., = subelement contribution to stiffness matrix for macro element

The transformation matrix 7. is calculated using the macro element interpola-
tion functions (which are defined in terms of local coordinates ¢ and 7) evaluated
at the subelement nodes. For example, for a four-node macro element and a
three-node subelement the transformation is

’
us u
v il Ly e v:
] =t la Ly G : (5)
u u
Vi I3 1 {33 134 v:
9 P b L
N,-(g’,-,n,-)

where I»-=[ 0 ]
Y 0 Nj(;:‘.ni)

Another possibility involves transforming the interpolation functions. This alter-
native is much more efficient unless there are a very large number of integration
points. This procedure will be illustrated by considering the interpolation for the

displacement in the x-direction, «. A few more definitions are required before
proceeding.

1« = macro clement displacement in x-direction

u, macro clement nodal displacements in x-direction
" = subclement displacement in x-direction

('’ subcliement nodal displacements in x-direction

N, interpolation functions for macro clement

N, = terpolanon tfuncuons for subelement

u

s

Within a subelement the x-displacement is approximated as



W = Ny, 6)

But the subclement nodal displaccments are slaves to the macro clement nodal
displacements, as described carlicr. This can be expressed as

w: = N, (.0, €))

where §,. 7, = coordinates of subclement node i. Combining Equations (6) and
(7) gives

w' = NIN(§ ) (8

or
w = NT, u %

where T,; = N;({.,n.:). Note that this transformation matrix 7;; is similar to that

in Equation (4). The approximation for u can also be expressed in terms of
modified interpolation functions,

w = Ny, (10)

where N, = NiT;.

Since the range of i in Equation (10) is | — (number of nodes in the subele-
ment) and the range of j is | — (number of nodes in the macro element), the
“modified” interpolation functions can be different in number than the original
functions. These modified interpolation functions are used when calculating the
subelement stiffness matrices. Recall that the B matrix contains derivatives of the

interpolation functions N;. This presents no problem since the T}, contains only
constants. For example, '

o, _aw:
ax ~ ax 7 (D

These modified interpolation functions are used in evaluating the terms related
to the displacement interpolation. The unmodified interpolation functions are
used to determine the determinant of the Jacobian for use in mapping the differ-
enual arca d {dn from the subclement local coordinatc sysiem to a global coor-
dinate system. Since the subelement displacements are stuved 10 the macro cle-
ment displacements, there is considerable freedom in defining the subelements.
[For cxample. there 15 no nced o prevent “danghing™ nodes like that shown in
Figurc S In fact, onc can cven define the stifiness matrix for a macro clement o
be o summation of some very unlikely fooking subclements. This is shown sche-
matically i Figure 6. This 15 probubly of hule pracucal utihity for two-
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dimensional models, but for threc-dimensional models this represents a major
stmplification.

The single ficld approximation gives very poor results for some configurations.
For example, if the lamina in Figure 3 have large differences in E,, it is very
difficult to approximate the stiffness in the y-direction using a single field approx-
imation. This is because the single field assumption results in continuity of
strains, which causes a discontinuity of stresses which should be continuous at
the lamina interfaces. A numerical example of this poor performance will be
given in the “Results and Discussion™ section. However, as will be illustrated
later, there are realistic configurations with significant inhomogeneity for which
a single field approximation performs well. Also, the macro elements described
herein cannot be evaluated using the usual mesh refinement convergence meth-
ods. As the mesh becomes more refined, the inhomogeneity within an element
disappears and the macro element becomes an ordinary element.

RESULTS AND DISCUSSION

Results for two basic configurations will be presented. The first is 2 one-
dimensional bimaterial rod and the second is a 2D idealization of a woven textile.
The material properties for the woven textile were assumed to be

E,, = 10 GPa E,, = 10 GPa E,; = 10 GPa
My, = ¢ 35 Viy = 0.35 Viy = 0.3
G, = 5 GPa G, = 5GPa G, = 3.845 GPa

These muaterial properties are meant to rcpresent those for a transverscly i1so-
tropic tow. They do not correspond 10 any particular material system. Two-
dimensional material propertics were obtined by imposing planc strain condi-
tons. The materizl properties were transformed 1o account for the inclination of
the fiber bundle

The bimaterial rod (shown schematically in Figure 7) was used to evalvate the
accuracy of a single field approximation when two materials are loaded in series.
The axial displacement was assumed to vary as L3, a.x’, where n equals the
order of the polynomial. Figure 7 shows the error in predicted stiffness verus the
ratio £,/E, . As expected, the error increases with the ratio E,/E.. Perhaps sur-
prising is the inability of an eighth order polynomial to adequately predict the re-



sponse when Fu/E s Largee than about 2. Obviously, the single ficld appeoxima-
tion is not very uscful when two very different materials are loaded n series.
tHowever, most realistic configurations avolving dissimilar materials have toad
paths which arc a combination of scrics and parallel. The example of primary
concern in tus paper is a textile composite, which will be discussed next.

‘Two-dimensional idcalizations of textile composites were analyzed using single
ficld macro clements. The tow path was assumeod to be sinusoidal. The thickness
of the tow, b2, was kept constant along the path. Waviness ratios b/a (sce sketch
in Figurc 8) were varicd from 083 to .333. lt should be noted that 2 woven com-
positc is inherently threc-dimensional. There is no typical cross section. Con-
comitantly, results from any two-dimensional textile model must be used with
caution. Conscquently, the results preseated should only be interpreted as an
evaluation of the cffectivencess of the macro clements for handling microstructure.
Figure 8 shows the variation of extensional stiffness with waviness. Two symmet-
rically stacked mats were considered. Only onc mat was modcled. Symmetry
conditions were imposed on the lower surface of the mat. Results were obtained
using 60 eight-node traditional finite clements (reference solution) and 2 eight-
node macro elements. The macro elements predict the stiffness variation quite
well, except for very large waviness ratios.

Figure 9 shows undeformed and deformed finite elcment meshes for a single
textile mat using 8-node traditional and 12-node macro elements. This configura-
tion is different from that in Figure 8, which had symmetry on the lower surface
of the mat. The absence of symmetry constraints results in large bending defor-
mation. The deformed meshes are also shown overlaid to compare the predicted
shapes. The macro elements predict the deformed shape very well.

Figures 8 and 9 showed the good performance of the macro element for pre-
dicting global response. This does not imply that stresses or strains within the el-
ement can be calculated accurately. In fact, the ecrors can be quite large. Figures
10 and 11 show the variations of g, along the lower boundary of the axial tow for
two symmetrically stacked mats. Results are included for both traditional and
macroelement analyses. The sample points are labeled in the figures as points
1-6. Figure 10 shows o, for a waviness ratio of .333. The actual g, variations, i.e.,
that calculated using conventional finite elements) is not complicated, but the
single-field approximation is quite inaccurate. A waviness ratio of .333 is fairly
large. For a smaller waviness ratio of .166 (Figure Il) the accuracy of the single-

fickd approxumation s mucn better. However, the use of single-field finite cle-
ments o caleulate local stresses and strains is not recommended. Much better cs-
anutes for local stresses and strains can be obtained using a global/local stralegy.
Single-ficld macro clements can be very uscful for the global analysis. A refined
traditional fintte clement analysis can then be used foc the local analysis.



CONCLUSIONS

A new type of finite clement was developed for analysis of textile composiies.
This new clement (referred 10 heecin as a macro clcment) accounts for the spatial
variation of material properties within a singlc clement. Tests of the macro cle-
meats showed good pecformance for modeling the global deformation behavior

of textile composites. Because of the single ficld assumption, the stresscs
calculated inside the macro clement are not accurate. To obuuin these stresses a
global/local strategy should be used in which macro clements are used for the
global analysis and conventional finite clements are used for the local analysis.

Although only two-dimensional clements were cvaluated, the formulation is
valid for threc dimensions. However, there are challenges in 3D modeling, which
arc not so apparcat or do not exist for 2D models. For example, in 3D one could
imagine mats which are oriented at other than 0° or 90° relative to the macro ele-
ment axes. Such an off-axis mat is much more difficult to model, particularly if
it is combined with mats with other orientations. There is obviously still much
work required to develop a general textile composite analysis.

REFERENCES

- Halpin, J. C.. K. Jeriae and J. M. Whitacy. 1971. “The Laminate Analogy for 2 and 3 Dimen-
sional Composite Materials” Journal of Composite Materials, 5:36-49.

2. Ishikawa, T. 1981. “Anti-Symmetric Elastic Properties of Compositc Plates of Satin Weave
Cloth ™ fibre Science and Technology. 15:127-145.

3. lIshikawa, T. and T. W. Choul. 1982. “Stiffness and Strength Behavior of Woven Fabric Compos-
wes” Journal of Material Science, 17:3211-3220.

. Whitcomb, J. D. 1991. "Three-Dimensional Stress Analysis of Plain Weave Composites.” in Cormn-
posite Matericls: Fatigue and Fracture, Volume 3, T. K. O'Bricn, ed.. ASTM STP 1110, Phila-
delphia: American Society for Testing and Materials, pp. 417438,

. Blackkeuer, D. M., D. E. Wulrath and A. C. Hansen. 1989. “The Study of Woven Fabric Rein-

forced Compwsite Materials” University of Wyoming Composite Materials Research Group
Repornt LIW.CMRG-R-89-102

6 Guedes, J. M. and N, Kikuchi 1990, “Preprocessing and Postprocessing for Materials Based on
the Homogemization Mcthod with Adaptive Finite Element Methods” Computer Methods o 4p
plied Mechanics and Engineering 83, Clsevier Science Publishers, pp. 143-198

7. Paumelle, oA Hassun and I Léae, 1990 “Composies with Woven Remnforcements' Caleals -

ton and Puciinetnic Analysis of the Properties of the Homogencous Equivalent ™ {u Recherch:
Acrospatialse . 1112

8. Paumcile, I A ll;ass'up and I Lene. 1991 “Microstress Analysis in Woven Composilc Struc-
wures” La Recherche Acrospatiale, 6:47-62.
9. Woo, K. and J. D. Whitcomb. “Macro Finite Element Using Subdomain Iategration” Offshore

Technology Rescarch Ceanter Report 03/92-A-29-100, Texas A&M University.

- Whiicomb, J. D. 1986. “A Simplc Rectangular Elcment for Two-Dimensional Analysis of Lami-
nated Composites.” Computer and Structures. 22(3):387-391.



Schematic of plain weave composite.

Figure 1.

Figure 2. Schematic of symmetnically stacked plain weave composite.
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Figure 3. Macro element with layered microstructure.
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Chapter: 2

MACRO FINITE ELEMENT USING SUBDOMAIN
INTEGRATION

SUMMARY

For some heterogeneous materials, it is not practical to model the microstructure directly using traditional
finite elements. Furthermore, it is not always accurate to use homogenized properties. Macro elements

have been developed which permit microstructure within a single clement. These macro elements
performed well in initial tests.

INTRODUCTION

In traditional 2D and 3D finite-element analysis, the material properties are assumed (o be
constant or at least to vary smoothly within a single element. This is valid for most engineering
applications because the microstructural scale (e.g. grain size in a metal) is very small
compared with the element size. However, some materials exhibit a very coarse
‘microstructure’, such as laminated or textile composites. Figure 1 shows a schematic diagram
of a cross-section of a textile composite. Owing to the complicated geometry, textile composite
structures are very difficult to analyse. To use the traditional finite-element method to solve
this kind of problem, finite elements have to be defined such that the material properties vary
smoothly in each finite element. This results in a very large number of elements. For laminated
composites, the geometry is simpler, but if there are many laminae (for example, 50 laminae
for a 6-25 mm laminate), modelling of individual layers becomes impractical because of the
large number of elements.

Material homogenization is one way of treating inhomogeneous materials. In this procedure,
the spatially variable material properties are replaced by some ‘effective’ homogeneous
properties. The effectiveness of material homogenization, however, depends on the problem
to be analysed. Material homogenization theories' = assume that the applied loading on the
boundary of the representative volume element (RVE) is spatially homogeneous. This
assumption is good as long as the characteristic scale of the microstructure is much smaller
than that of the macrostructure. For example, volume averaging in laminated composites
works well for in-plane loads. However, it gives large errors for bending loads unless there are
many plies and the different plies are highly dispersed through the thickness. Higher-order
theories such as classical laminate theory (CLT)* account for the geometric details of the
microstructure for the laminated composite plates in terms of ist and 2nd area moments of
inertia. CLT works well for in-plane and bending problems in thin laminated plates. But CLT
ignores out-of-plane strains, which is unacceptable for relatively thick plates. There are many
other ways of homogenization, but none of them are problem-independent. When there are

13



material property discontinuities, it is most accurate 10 model cach material group discretely.
However, this approach requires large computer memory and CPU resources.

Some work has been done in dealing with specific probiems (o overcome this difficulty.
Steven® developed a quadratic triangular and a quadratic isoparametric element with an
internal interface modelied by a straight line. In his work, trian ;ular subregions were used to
perform numerical integration. He also suggested the possibility of using a second
isoparametric mapping to simplify the integration, but he ncither described any details nor
implemented the method. The concept of splitting the integration limit was also discussed by
Panda ef al.® In his finite-element formulation for laminated plates, the integration limit
through the thickness was divided to define material propertics of cach individual layer. Foye’
studied material properties of fabric-reinforced composites using subcell analysis. The unit cell
was divided into rectangular paralellepiped subcells. Since the subcell boundaries do not match
the material interfaces, averaged material properties were used in each subcell.

The present paper describes a ‘macro’ finite element which can account for the details of
microstructure within an clement. A macroelement is defined 10 be an element consisting of
several subdomains. Figure 2 shows a macro element that has four subdomains. Macro
clements can have material discontinuities inside the element, but in each subdomain the
material properties are smooth functions of the spatial co-ordinates. The macro element is
identical to a traditional finite element when it has only one subdomain. When there are
material discontinuities, the subdomainss are used to define the material boundaries and to
facilitate the numerical integrations.

It should be noted that since the present study was based on a displacement formulation,
even with very high-order interpolation, significant stress errors are expected near the region
where geometric or material discontinuities occur. Local stress distributions for regions of
special interest can be achicved by globalflocal analysis.*~!° The proposed macro clements are
best suited for use in the global analysis.

In the following Sections, the finite-clement stiffness matrix formulation is explained in
detail. Then examples for several configurations are discussed to illustrate the performance of
the macro elements.

CALCULATION OF MACRO ELEMENT STIFFNESS MATRIX

This section describes the finite-clement stiffness matrix formulation for a macro element for

two-dimensional elasticity analysis. The extension to three dimensions is trivial and will be
discussed briefly at the end of this Section.

In a traditional displacement-based finite-element method, the element stiffness matrix has
the form

(K} = 50 (B)T(D}(B] dxdy M

14



where {D] and [B] arc defined by
lo] = [D](c}

(e} = (B]lq]

and {q} is the nodal displacement vector. Supposing that there are material pcoperty

inhomogeneities within the integratioa domain Q2 (i.¢. the (D) matrix is a piece-wise-continuous

function of spatial co-ordinates within a macro element), the macro element is divided into

subdomains. Within ecach subdomain, the material properties vary smoothly (see Figucre 2).
Coansider an element that has # subdomains Q; where

3 a,=0 @

i=}
The element stiffness matrix becomes

Kl=3 L (BIT[D): [B] dxdy G)

A robust procedure is needed 10 evaluate the contribution of the ith subdomain

(K], = jn {BIT(D};(B] dxdy )

The procedure developed herein involves the use of three co-ordinate systems. Figure 3 shows
the three co-ordinate systems. The use of three co-ordinate systems. differs from conventional
finite elements, which use a global and a local co-ordinate system. (In Figure 3, these are the
(x,») and (¢, n) systems.) The mapping of co-ordinate systems in conventional finite elements
permits integration over a simple square region even when the actual finite element is quite
distorted. If the material properties vary discontinuously within an element, subdomains must
be defined in which the material properties vary continuously. In general, these subdomains
are distorted such as the one indicated by the shaded region (ijk/) in Figure 3(a). When this
distorted subdomain is mapped into the (£, 5) co-ordinate system, it is still distorted (shaded
region in Figure 3(b)) and concomitantly the integrations would not be simple. If this
subdomain is mapped again into a third co-ordinate system (r,s), the integrations are again
quite simple. The remaining task is to describe how to perform the integrations in the (r, s)
co-ordinate system.

There are two primary concerns. The first is defining the differential element dx dy in terms
of dr ds. Figure 3 shows that

dxdy=|J]dtdy (5)
where J is the Jacobian matrix defined by
_9x. ¥
a(t. 1)
However,
dtdp=|J]drds )
where
I a(El 'I)
1= a(r, s)
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Therefore, the net result is
dxdy=|J||J|drds @)

The second concern is defining the integrand in terms of the (r,s) co-ordinates. That is,
{B)T[DJ:B] involves derivatives of the interpolation functions. These interpolation functions
are defined in terms of ¢ and 5, not r and 5. For example,

ax a¢
=J°! : 8)
ax dn

Note that the calculation of the derivatives involves J but not J. This is because the Ni's are
defined in terms of £ and g alone. It is necessary to evaluate the integrand (B} T{DJ; (B} at
particular values of 7 and 5. As part of the mapping between the (£.7n) and (r, s) co-ordinate
systemns, £ and n are approximated as

=Ni(r,s)&
¢ N ( )
n=Ni(r.s)n;
When performing numerical integration in the (r,s) co-ordinate systems, § and 5 are
determined using equation (9). These values are then used to evaluate the integrand.

With equations (4) and (7), the coatribution of the ith subdomain stiffness matrix becomes

[I<L~=Sl j' (BIT(D};(B)|J||T| drds (10)
-1 -k

In Figure 2, both the macro element and the subdomains are quadrilaterals. This is not
necessary. The interpolation for the solution is defined in the (£, ) co-ordinate system. The
subdomain, which is mapped into the (r, 5) system, is needed only to simplify the numerical
integrations. The type of subdomain does not affect the solution except that it should
adequately describe the geometry of the microstructure.

The extension to three dimensions is simple. The three co-ordinate systems would be
(x,».2). (¢, 9, §) and (r, 5, £). The form of equations (1)—(10) is unchanged except to account
for an additional co-ordinate direction. The contribution of the ith subdomain to the macro
element stiffness matrix would be

1ol 1 _
(K), = g S S (BIT{D):(B]{J|{J| drdsdr an
-1 Jo1 Jo

RESULTS AND DISCUSSIONS

This section discusses the use and performance of the macro elements for two-dimensional
clasticity. Three basic configurations were studied: (1) square and distorted 4-node elements,
(2) (0/90,/0) and (90/0,/90) laminated beams with end moment and shear force loadings, and
(3) a single and double plain weave textile composite under tension. Four-, 8- and 12-node
macro elements were evaluated. The following material properties were used:

Eyy =100 GPa Ex =10 GPa Es3 = 10GPa
'|z=0‘35 i3 =0'3S sz=0‘3
Gu2=5GPa G =5GPa G23; = 3-845 GPa
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Two-dimensional material properties were obtained by imposing plane strain conditions. For
textile composites, the material properties were transformed to account for the inclination of
the fibre bundie.

The first use of the macro clement was to demonstrate that the mapping is cocrect. Square
and distorted 4-node macro clements were subdivided into four subdomains (Figure 4). All
four subdomains were assigned the same material properties. The macro element stiffness
matrices should be the same as that for 4-node traditional elements. Tables | and I list the
cigenvalues of the traditional and macro element stiffness matrices for different orders of
integration. For the square element shown in Figure 4(2), both traditional and macro elements
produce exactly the same results when (2 x 2) Gaussian integration is used. Note that since
there are four subdomains, the actual number of integration points for a macro element is four
times the number of subdomain integration points. For the distorted element showa in
Figure 4(b), results for the traditional finite element using (2 X 2) integration differ from the
exact solutions. Table I shows that (3 x 3) integration for the traditional element and (2 x 2)
integration for the macro clement are nearly exact. As the integration points increase, both
etements converge to the same results.

Figure 5 shows the moment resultants for two laminated beams. Tip displacements were
applied to produce a maximum strain of O-1%. Homogenized material properties were
obtained by the rule of mixtures.* The reference solutions are from traditional finite-element
analysis with four 8-node traditiona! elements. Four-node and 8-node macro elements were
evaluated. A single macro element with four subdomains (one subdomain per lamina) was
used. For the 4-node macro clement, selective ‘reduced’ integrations'' with 17 integration
points were performed. Results show that for both (0/90,/0) and (90/0,/90) stacking sequences,
one 4-node or 8-node macro element predi: ts the bending stiffness very well. Of course, an
8-node traditional element with the volume-averaged homogenized material properties cannot
distinguish differences in the stacking sequence. Hence, the errors are large for the volume-
averaged homogenized material model, as expected. The percentage errors are shown in
Table 111. Note that accuracy depends on stacking sequence.

Figure 6 shows the tip displacement comparisons for a short (3 x 1) cantilever beam for two
stacking sequences. A unit shear force was applied at the right end of the beam. Four
subdomains were used 10 account for the inhomogeneous material properties. Single 4-node,
8-node and 12-node macro elements were used. The reference solutions were obtained with a
refined mesh (64 eight-node elements). As expected, the traditional finite-clement analysis using
the refined mesh with volume-averaged homogenized material properties does not predict the
deformation behaviour. The 8-node macro element predicted the displacements fairly well. The
12-node macro clement showed excellent performance. The 4-node macro element did not
perform well. This was expected since the assumed displacement fields for the 4-node element
are 100 simple for this problem. Table IV shows the percent errors for each case. For all three
macro elements, the error was larger for the (90/0,/90) laminates.

The ‘effective’ extensional modulus £, against waviness of plain weave textile composites
was calculated using traditional and macro elements. Figure 7 shows the configuration studied:
two symmetrically stacked layers. Thick and thin lines in the upper mat indicate the macro
elements and subdomains, respectively. Only the upper mat was modelled because of
symmetry. The models have a length which is the same as the fibre bundle wavelength. For
simplicity, the textile composites were assumed not to have any pure matrix regions.
Displacements were applied to produce a 0-1 per cent nominal strain (£} in the x-direction.
The effective E, was defined to be

{o)
Ex =
()
where
(o) = Axial force — _Au
Area a
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The waviness was defined to be w = ba, where the centreline of the wavy fibre bundle is
assumed (o have a sinusoidal shape given by

= 2 s"\(.z_'!)
r= 4 a

Two 4-, 8- and 12-node macro elements were used. Each macro element consisted of 15
subdomains and models a half-wavelength. For the reference solution, 2 mesh with 60
traditional eight-node elements was used. Figure 8 shows several of the traditional finite-
element models. (The wavy fibre bundles are indicated by the shaded region.) Figure 9 shows
the effective E, against waviness. The error increased with increased waviness. Both 8-node
and 12-node elements performed fairly well. The 4-node element was not very accurate except
for small waviness.

Deformed meshes for macro element and traditional models are shown in Figure 10. These
models are for a single plain weave mat (i.e. no symmetry). The Figure shows quite graphically
the effect of the microstructure on the predicted deformation of a single mat. The Figure also
shows that the macro element predicts the deformed shape very well. It should be noted that
oaly linear analysis was performed in the present study. The deformation shown in Figure 10
is larger than would be expected from a non-linear analysis.

CONCLUSION

A displacement-based macro clement was developed to expedite elasticity analysis of
heterogeneous materials. Two-dimensional macro elements with four, eight and 12 nodes were
implemented and evaluated for several realistic configurations. Since the macro elements used
a continuous strain field approximation, it is obvious that there is violation of equilibrium at
the material interfaces and the stress distributions near the interfaces would not be very
accurate. However, the macro elements performed well in terms of global response for the
configurations considered. To obtain detailed local stress distributions, a globalf/local strategy
is needed. The proposed macro clements should be very useful for expediting the global
analysis.
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Table 1. Eigenvalues against Gauss integration
points for square elements (Figure 4(a))

Eigenvalues (x10%)

{ntegration I1xi 2x2

4-node traditional: 0-00000 0-00000
0-00000 0-00000
0-00000 0-00000
0-00000 5-76923
0-00000 5-76923
7-69230 7-69230
7-69230 7-69230
19-23076 19-23076

4-node macro: 0-00000 0-00000
0-00000 0-00000
0-00000 0-00000
4-32692 5-76923
4-32692 5-76923
7-69230 7-69230
7-69230 7-69230
19-23076 19-23076

Table [I. Eigenvalues against Gauss integration points for distorted elements (Figure b))

Eigenvalues (x 10?)

Integration Ixt 2x2 3x3 4x4 $x5
4-node traditional: 0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 4-55397 4-61494 4-61621 4-61624
0-00000 6-19357 6-25265 6-25377 6-25379
7-18992 8-56256 8-62312 8-62441 8-62444
7-93269 9-38271 9-46246 9-46405 9-46409
20-57450 20-87012 20-87916 20-87935 20-87935
4-node macro: 0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 0-00000 0-00000 0-00000 0-00000
0-00000 0-00000 Q-00000 0-00000 0- 00000
7-93509 4-61146 4-61621 4-61624 4-61624
8-59403 6-24930 6-25377 6-25379 6-25379
3-63243 8-61957 8-62441 8-62444 8-62444
5-06974 9-45776 9-46405 9-46409 9-46409
20-76932 20-87863 20-87935 20-87935 20-87935
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Table IIl. Percentage error for moment
resultants

(0/90:/0)  (90/0,/90)

4-node macro 2-451 5-832
8-node macro 0-001 0-000
12-node macro - -
Homogenized 37-61 160-3

Table IV. Percentage error
for tip displacements

(0/90:/0) (90/02/50)

23-78 29-45
9-873 12-87
2-857 4777

a3-n 54-64
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Figure 3. Mapping between three co-ordinate systems
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Figure 4. Macro elements for test of mapping
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Figure 7. Two symmetrically stacked plain weave marts
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Figurc 8. Scveral traditional meshes: (a) bfa = 0-333, (b) bla =0-167, (¢} bfa=0-111, (d) bla = 0-083
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Figure 10. Deformed meshes for a single plain weave mat (120 cight-node traditional elements and 4 twelve-node
macro eleaents are ased; waviness bfa = 0-167; nominal strain = 0-05)
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Chapter: 3

ENHANCED DIRECT STIFFNESS METHOD FOR
FINITE ELEMENT ANALYSIS OF TEXTILE COMPOSITES

ABSTRACT

Traditional homogenization techniques are not useful when the microstructural scale of
a material is of the same order of magnitude as the structural scale of a component. Such is the
case for many textile composites. Since discrete modeling of the microstructure throughout a
component is prohibitively expensive, continuum finite elements are needed which account for

microstructure within a single element. This paper describes a simple substructuring technique
for formulating these special elements.

INTRODUCTION

By changing stacking sequence, fiber orientation, and materials, traditional composite
laminates can be tailored for specific applications. With the introduction of advanced textile
composites, there are even greater opportunities to tailor composite properties. Not only are

there many textile forms (eg. weaves, braids, knits, etc.), but there are many unique varieties
ot each form.

Accurate predictive analyses are essential for designing high performance composites.
[n contrast to traditional tape laminates, verified analyses are not in place for textiles. Figure |
illustrates the complexity of the task of developing an accurate textile analvsis. The figure shows
schematics of a traditional laminate and a woven material. For the traditional laminate one can
define a unit cell of dimensions approximately .007 mm. This unit cell can be analyzed (0
determine cffective engineering properties for the much larger individual lamina. Then cach
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lamina can be treated as a homogeneous orthotropic layer. For a woven composite the unit cell
can be larger than Imm. For the woven composite one can use homogenized engineering moduli

to describe the tow properties (a tow contains on the order of 6000 filaments), but there is a
much larger microstructural scale related to the interlocking of the tows.

Description of the material properties for a weave requires different strategies at different
microstructural scales. Figure 2 illustrates different microstructural scales. Actually all of the
schematics were generated from the same basic unit cell labeled “coarse microstructure.” The
term “"coarse" refers to the very distinct phases at this level of observation. In contrast, if a very
large number of unit cells are considered, the material appears almost homogeneous (schematic
labeled fine microstructure). At the extremes of microstructural scale the choices for material
modeling are obvious. For coarse microstructure the individual tows and matrix pockets are
modeled discretely both in terms of geometry and the abrupt changes in properties at the
interfaces. For fine microstructure effective homogenized engineering properties can be used.
Traditional finite element methods are appropriate at these two scales. Between these two
extremes (labeled “transitional microstructure™) traditional finite elements are not appropriate.
In this range there are too many microstructural features to model them all discretely, but there
are 100 few to use homogenized material properties. In the transitional range of microstructure,

special finite elements are needed which permit material vanation within an element. Of course,
this is routine for layered plate and shell elements.

Recently, continuum elements have been developed for accounting for textile type
microstructure within a single element [1,2]. The elements described in these references are
based on a single assumed displacement field throughout the entire element. A more general
element formulation is presented herein that includes the single field approximation as a
degenerate case. This more general formulation is an example of reduced substructuring [3]. In
brief, the implementation begins with the development of an ordinary finite mesh for the basic
textile unit cell. Then interior degrees of freedom are statically condensed out. Next the number
and location of desired boundary degrees of freedom are selected. Finally, the original boundary
degrees of freedom are expressed in terms of the desired boundary degrees of freedom. One
objective of this paper is to describe a very simple technique for calculating the stiffness matrix

for a reduced substructure. The other objective is to show a few results which illustrate the
effectiveness of this type of element.

In the discussion that follows, the term "macro element” will be used to indicate an
element which allows for internal microstructure. Accordingly, the elements described in {1,2]
are single-field macro elements. Similarly, the reduced substructure elements will be referred

to as multi-field macro elements, since the displacement field inside the macro element is defined
plecewise.

THEORY FOR REDUCED SUBSTRUCTURING

[n multi-field elements the internal dof are eliminated using the equivalent of stauc
condensation. Also, boundary degrees of freedom (dof) which are not to be part of the macro
clement dof are expressed in terms of the substructure dof using multipoint constraints.

27



Theoretically, this is all very simple. Con ider the 4-node macro element in Figure 3.

Assume the governing equations are partitioned as follows

K, K
AA asilq, ) FA )
K:a Kas s F’

and qp is the list of unknowns to be condensed out (see Figure 3).

Before imposing the multipoint constraints on the excess boundary dof, the reduced
stiffness matrix and load vector can be expressed as

= T -l
Kgg = Kgp — Kuig Kuu Ky @

T -1
Fg=Fp - KgK W F,

This procedure often is not practical as stated because of the matrix inversion which
eliminates sparsity in Ky 4 and the large matrix multiplications. The elimination of internal dof
can also be accomplished using Gaussian elimination if the dof to be eliminated are grouped
together at either the beginning or the end of the list of unknowns. This procedure is well
known, so it will not be discussed herein. See {4] for details. After eliminating the interior dof,
multipoint constraints can be applied to the remaining dof to eliminate unwanted boundary dof.
This can be expressed in matrix form (assuming the four node macro element in Figure 3) as

iy,

Vi
qB = Tqmaao where qmao = : (3)

The transformation matrix T expresses how the excess boundary dof are slaved to the
macro element dof. It should be noted that if the internal dof are also slaved to the macro
element dof (rather than statically condensed), a single-field approximation is obtained. Of
course, a formulation like that in [1] is much more efficient for single-field elements. However,
the current formulation permits great flexibility for evaluating various approximations.

[t 1s not always cfficient 10 order the dof such that Gaussian elimination can be used to
obtain the reduced suffness matrix and load vector, since such ordering night result in large

bandwidths. An alternative is 1o usc the formal definition of the stiffness coefficient Kij-

Kij = force at dof 1 duc to unit displacement at dot )
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Using this definition we would simply solve a series of problems in which one dof is set equal
to 1 and the rest of the boundary dof would be constrained to zero. The restraint forces at all
the boundary dof constitute one column of the reduced stiffness matrix.

This process is repeated for each boundary dof to obtain the entire reduced stiffness
matrix. The reduced load vector is obtained by solving one additional problem in which all
boundary dof are constrained to be zero and the internal loads are applied. The negative of the
boundary restraint forces constitute the reduced load vector contribution for the internal loads.
Once the reduced set of equation is obtained, the multipoint constraints can be imposed to
eliminate unwanted boundary dof. This alternative is not new. It can be considered a numerical
application of the direct stiffness method for calculating stiffness matrices. It also may not be
very efficient when there are a large number of boundary dof to be eliminated. Consider a case
in which there are 32 boundary dof, but only 8 are to be retained in the macro element. The
procedure described above requires the solution of 32 unit displacement cases. A new procedure
1s discussed next which would only require 8 unit displacement solutions.

ENHANCED DIRECT STIFFNESS METHOD

The enhanced direct stiftness method is derived starting with a consideration of the work
performed by the boundary nodal forces during deformation. To simplify the discussion only
linear configurations will be considered herein. Figure 3 show a schematic of a typical mesh for
a macro element. There are four interior nodes (nodes 1, 2, 3, 4), four boundary nodes to be
retained (nodes 11, 12, 13, 14; dof = q;), and six boundary nodes (nodes S, 6, 7, §, 9, 10;
dof = qg) which are slaved to the gq; through multi-point constraints. The nodal forces
correspondmo to g; and q g are defined to be F; and FB respectively. For the particular mesh

in Figure 3, the range of 1 and § are 1-8 and 1- 12 respectively. Assuming linear elasticity, the
work performed by the boundary nodal forces is

-1 -~ =
W = 'Z'(Fi‘h + Fp‘]g) ’
i = 1, number of retained dof ’ @
f = 1, number of slaved dof

The qg are slaved to the q;, which can be expressed as

q; = T, q; &)

where Tg; = N;($p, np) is calculated using interpolation functions for the boundary. Combining
equations 4 and 3 yields

W= (F Fﬁ'rs‘ ) (®

(R

[t is well known that the stuffness matrix can be expressed as (5]
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2
K . _%U

;a8 m
9q,9q,
But U = W for linear configurations so that
2
K., =¥ ®)
dq,9q,

Combining egns. 6 and 8 yields

=1 ", "7““= *_ﬁTa 9)
2|19q, dq, dq aq, "

. . . JF JF
From the Maxwell-Betti reciprocity theorem we know that = -

3q, 9,
terms in equation 9 are also equal for the same reason, but it is not obvious in the present form.

To make the equivalence more obvious, first, equate the work .of the forces ?B with that of the
equivalent forces f; in terms of the retained dof

. The third and fourth

1 = _ 1
1Fy gy = 2fa, (10)

Combine equations 5 and 10 to obtain

Ep Tyiq, = fia, an
Equation 11 shows that the equivalent nodal forces f; are

f, = F,T,, 12)

Hence, the third and fourth terms in equation 9 become

of, of.

aq,, dgq,

(13
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Again, using the Maxwell-Betti theorem, these two terms are eqnal. Therefore, equation 9 can
be expressed as

K 2.
~a aq

(14)

The implementation of equation 14 using the direct stiffness method is as follows:

1. Impose a unit displacement q;.

2. Also impose displacements EB’ since EB = Tg1q;-

3. Analyze model.

4. Calculate restraint forces F; and Fg.

5. Calculate f, = FgTp,

6. The sum of F_ and f, = column 1 of the reduced stiffness matrix.
7.

Repeat steps 1-6 for each g;.

CONFIGURATIONS

Plain weave composites with different waviness were analyzed. Figure 4 shows a
conventional 3D finite element model of a plain weave. It has 381 nodes and 64 quadratic
elements. The tow path was assumed to the sinusoidal. The waviness ratio is defined to be b/a,

where b = the mat thickness and a = the wavelength for the tows. The waviness ratio was
varied from .033 to .33.

This mesh was used to obtain reference solutions. It was also used to generate 20-node
single-field and multi-field macro elements. Hence, there were three models: the conventional
model shown in Figure 4, a one element mesh using a 20-node single field element, and a one

element mesh using a 20-node muiti-field element. The single-field results were obtained using
the formulation in [1].

Two sets of boundary conditions were used: one for a narrow two mat composite and the
other for an infinitely repeating unit cell. The boundary conditions for the narrow 1wo mat case
correspond to a specimen which is infinitely long in the x-direction, width "a" in the y-direction,
and thickness 2b in the z-direction. The boundary conditions were as follows.
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Narrow two mat composite:

«(0,y,2) =0 u(% .y.z) = specified oonsiam value

(15)
v(x,0,2) =0

w(x,y,0) =0

I[nfinitely repeating unit cell:
Constraints listed in equation (15) and

a

v x, — ,Z| =constant
2

w(x,y,b) = constant

The material properties for the tows and resin pockets were assumed to be

Tows:
E,| = 206.9GPa E,, = 5.171GPa Ey; = 5.171GPa
Vlz = .25 U13 = 25 V23 = 25
Gy = 2.386GPa G5 = 2.386GPa G,3 = 2.386GPa
Resin:

E = 3.45GPa v = 35

RESULTS AND DISCUSSION

There are two aspects to the evaluation of the procedures outlined in this paper. First,
the methodology for calculating the multi-field stiffness matrix was checked. This was
accomplished by companng the stiffness matrix with that obtained using standard Gaussian
elimination followed by application of multipoint constraints. As expected, the results agreed.
The second task is to evaluate the performance of the multifield elements for analysis of textile
composites. This second task is only partially complete. A few results are discussed in this
section which suggest that this type of element can be very useful.

Axial loading along the x-direction of a narrow strip of plain weave composite was
modeled, as described in the Configuration section. Because of the complex spatial variation of
materials properties, there is significant distortion, even under simple extension. Figure 5 shows
the distortion of the macro element mesh and the conventional mesh. The macro element predicts
the distortion quite well. ( It should be noted that the elements in Figure S are drawn with

straight lines joining the nodes. This is a limitation of the plotting software, not a characteristic
of the solution.)
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Figures 6 and 7 show the variation of several effective engineering properties with
waviness ratio for infinitely repeating unit cells. Results are shown for conventional, single-field,
and multi-field elements. Both types of macro elements predict the trends quite well. As
expected, the performance of the multi-field elements is considerably better than that for the
single-ficld elements. The accuracy of the multi-field elements is quite good except for very
large waviness ratios. At small waviness ratios the single-field macro elements predict the in-
planc behavior very well, but not the out-of-plane (ic, £, v,;). The single-field approximation
imposes strain continuity throughout the element, which is not correct for heterogeneous regions.

The error associated this approximation is more significant for out-of-plane properties than for
in-plane properties.

CONCLUSIONS

A simple formulation for multi-field continuum finite elements with microstructure was
developed. Initial tests showed very good performance in modeling the global response of a plain
weave composite subjected to axial extension. Much more work is needed to fully evaluate the
performance of these elements. Future work is needed ( and is planned) to evaluate the accuracy
of these elements for much more complex loadings. Also, planned is an evaluation of the
accuracy of the calculated stress fields within the elements.
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Fig. 1 Comparison of microstructural scales for traditional and textile composites.
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Figure 3 Finite element mesh for substructure analysis.
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Waviness Ratio = b/a

Figure 4 Original finite element mesh for textile composites.
(381 nodes, 64 elements)

38



'S[OPOW JUIWD[D DIUY [CUOKIUIAUOD PUB JUWI[3 oJoCw pId

PIERAQ

4

-jjnuw Jo uonv

wiogd( § N3

39



Modulus, GPa

GO .
Ey
%07 Single -field
Multi-field
40 -
Traditional
30
20 Single -field
E
z / Multi-field
104 /
Traditional
0 T 1 T & v T ¥ 1
0.0 0.1 0.2 0.3 0.4

Waviness Ratio, b/a

Figure 6 Extensional moduli versus waviness ratio for infinitely repeating
plain weave textile composites.
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Figure 7 Poisson ratio versus waviness ratio for infinitely rcpcating plain
weave textile composites.
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Chapter: 4

Boundary Effects in Woven Composites

Abstract

Two dimensional finite elements were used to study boundary effects in plain weave
composite specimens subjected to extension, shear, and flexure loads. Effective extension, shear,
and flexural moduli were found to be quite sensitive to specimen size. For extension and flexure
loads stress distributions were affected by a free surface, but the free surface boundary effect
did not appear to propagate very far into the interior. For shear load the boundary effect
appeared to propagate much further into the interior.

Key Words: textiles

woven composites
finite elemeats
stress analysis
boundary effects

Introduction

Fiber tows, each consisting of thousands of individual filaments, can be woven, braided,
knitted, etc. to create complex fiber preforms. These preforms are then impregnated with a resin
and cured to make textile composites. The interlacing of the fiber bundles provides many
obstacles to damage growth. Accordingly, there is the poteatial for greatly improved resistance
to impact damage growth. Unfortunately, there are also negative effects due to the fiber tow

interlacing. The fiber tow curvature reduces the effective in-plane moduli. The curvature also
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induces many local stress concentrations which can result in carly diffusc damage initiation,
particularly 1n the matrix. The fabrication process is not benign. For example, wcavin{; involves
much mechanical handling of unprotected fibers (i.c. fibers which éfc not embedded in matrix).
Stitching of textile preforms to increase delamination resistance has the side effects of breaking
fibers and inducing local tiber curvature. Optimal design requires the capability to predict both
the positive and negative effects of potential textile fiber architectures. Unfortunately, the
complex fiber architecture is difficult to analyze. Accurate analysis requires accurate geometric
representation and constituent properties, such as fiber and matrix properties and fiber volume
percentage. For textile composites there is particular difficulty in determining the actual fiber
tow geometry and developing a three-dimensional model which can be analyzed. There have
only been a few attempts at detailed three dimeasional analysis (eg. Refs. {1-3]). Even the
accuracy of these models for local stress calculation is an open question because of the
uncertainties in the input data (i.e. the approximation of tow geometry and other properties).
Most of the analyses to date have been similar to laminate theory in level of approximation or
detailed two dimensional (2D) or quasi-three-dimensional (Q3D) numerical analyses of a
“representative™ cross-section (eg. Refs. [4-7]). As the schematic in Figure 1 shows, there is no
such “representative” cross-section, even for a plain weave composite. While. such 2D or Q3D
analyses are likely insufficient for accurate prediction of local stress states, they are useful for
obtaining insight about the effects of fiber tow waviness on effective moduli and strengths. In
fact, the results in this paper, which are based on 2D analyses, fall into this category.

The analysis of textile composites is in its infancy as compared to laminated composites.
There are many aspects of the behavior of these materials which have not even been examined,

much less accurately described. The objective of this paper is to begin to address onc question

43



about the behavior of plain weave composites: “How does the presence of 2 boundary affect the
stiffness and stress distribution in a representative unit cell?” The boundary surfaces rcferred to
here arc those preseat due (o finite thickness. Three nominally simple boundary conditions werc
considered herein: in-plane extension, transverse shear, and flexure. Configurations of different
thicknesses were analyzed using 2D finite clements. The analyscs were performed using
conventional elements and multi-field macro elements (reference 8). Macro elements are defined
to be elements which contain internal microstructure. The multi-field elements arc a form of
reduced substructuring. The macro elements permitted analysis of quite large models without
requiring huge amounts of computer memory and cpu time. Of course, a few macro elements
are not as accurate as using a huge collection of conventional elements. Accordingly, one
additional objective of the paper is to evaluate the performance of macro elements for simple

coafigurations.

The following sections will begin with a discussion of the configurations studied. Then
the results will be discussed. First effective extensional, shear, and flexural moduli will be

discussed. Then the effects of boundaries on stress distributions will be discussed.

Configurations

The various configurations studied are all synthesized from a single basic unit cell. This

unit cell will be discussed first. Then boundary conditions for infinite and finite configurations

will be discussed.

Unit Cell

The basic unit cell is shown ia Figure 2 . The cell consists of tows running in the x- and

z- directions. In reality there would also be pure matrix pockets, but these were filled with z-
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direction tows in the model used. (Of course, in reality there is no typical cross section cither,
as discussed earlier.) The two dimensional approximation implics that the x- dircction tow is a

wavy “plate” and the z-direction tows are straight fiber bundles. Obviously these are serious

approximations, so the results presented are intended to be qualitative only. The ceaterline of

the x-direction tows follows a wavy path described by thz function %sin:-i. For the results
a

presented herein o=1.58. The thickness of the tow as measured along a line normal to the tow
ceaterline was held constant. It should be noted that the uniz celt selected assumes a symmetric

stacking of the woven mats. There are an infinite number of other possibilities.

Two sets of two material properties were used. Thev are

Set 1
E, = 100 GPa | E,, = 10 GPz E,; = 10 GPa
Vi2 = (0.35 Y13 = 0.35 vy = 0.3
Gy, = 5 GPa G,; = 5 GPz G,; = 3.845 GPa
Set II
E,, = 165.8 GPa B,y = 11.51 GPa Ey; = 11.51 GPa
Vi2 = 0-273 Vi3 = 0_273 VB = 0.33
- Gy, = 15.4 GPa Gy = 15.4 GPa Gyy = 4.17 GPa

These properties were transformed to account for the waviness of the x-direction tow.

Plane strain conditions were imposed to obtain two dimensional properties. Two sets of

properties were used. This 1s admittedly not optimal. The homogenization analyses were

performed using Sct . The stress analysis results were chained using Set IL.
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Periodic Boundary Conditions for Infinite Configurations

Figure 2 shows a typical unit ccll for symmetrically stacked mats before deformation.
[f this cell is imbedded within an infinite array of identical cclis and displaccments or tractions
are imposed “at infinity”, then every unit cell will deform identically. The periodicity of the
displacement field can be imposed on a single unit cell, thus permitting the solution for the
infinite domain. The solution for an infinite domain will be useful for comparison with finite

configurations subjected to nominally uniform extension or shear. Using the coordinate system

in Figure 2a, the periodic conditions can be expressed as

u(a,y) = u(a,y) + u, -y H
v(a,y) = v(-a,y) + vy - vy (2)
u(x,f) = u(x, -8) + ug -y, (3)

v(x,B) = v(x, -B) + vq- vy 4)
There are no specified non-zero forces (The net forces are zero at any poiat inside the infinite
media.). The “load" consists of the values chosen for (uy - uy), (v, - v;), etc. These values
depend on the nominal strain state desired. (Specific values for the different states will be

discussed later in this section. Equations 1-4 impose certain constraints which are not so

obvious, but are worth mentioning, since they are exploited in the finite element analysis. These

constraints are

Uz - Uy = Uy - Uy (5)
V3 -V T Ve oV (6)
Uy - Uy = Ug - 4y @)
V3 - \’4 = V2 - Vl (S)
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‘Mhese constraints can be obtained from cquations 1-4 by substituting in specific vertex values

of x and y. For cxample, substitutc x=« into cquation 3.

u(a,B) = u(a, -B) + ug -y
But u(e,B) = uj and u(a, -B) = uy. Hence, equation 3 states that uy - Uy = Ugq - Uy. Equations
5-8 indicate that if the nodal displacements at the four corners of the unit cell arc used to
calculate the displacement gradients, we find that (%)o(%";)o(%)o . and [ﬁ)c are constant. The
subscnpt "0"

is used to indicate that these are nominal displacement gradients. On a pointwise

basis these are certainly not constant for the obviously inhomogeneous unit cells. Equations 1-4

can now be expressed as

u(e,y) = u (ay) + 2a(§ﬁ] 9)
Jx o

vy = v Cay) +2o{Z] (o)
Ox o

W(x.8) = u (x, -B) + 28(9‘1) (11)
Y Jo

v(x.B) = v(x, -) + 28 (Q} (12)
)

Because of symmetries only part of the unit cell must be modeled. Herein the quarter unit
cell shown in Figure 2(b) was modeled. If all the symmetries had been cxploited, only

one-cighth of the unit cell would have to be modeled. For convenicnce the coordinate system

is shifted to the center in Figure 2(b).
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For extension loading the boundary conditions are quite simplc. The constraints imposed

for nominal o, loading are

) A

v(x, —%) = v(x, —g—) = coastant, but uniknown

,y) = gpecified constant valuc
(13)

R

Nominal o, loading (which was not considered herein) would be very similar. For

nominal o, load the boundary conditions are

specified constant value

=
—
~
NI'
s o~
i’
il
i
=
N
~
N ™
L
|

specified constaat value

<
r—
~|g
<
s
It
|
<
N
| R
<
L S
il

(14)

)

The boundary conditions in equations 14 state that the displacements normal to an edge

are anti-symmetric (and unknown except at the vertices). The tangential displacements are

constant along an edge and are specified.

Boundarv Conditions for Finire Configurarions

Extension, shear, and flexure loading were considered for a wide range of specimen
thickness (in the y-direction). Hence, the various meshes had different numbers of unit cells

For extension loads the boundary conditions were like those in equation 13 if onc considers «
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and f3 10 be the dimensions of the eatire mesh, rather than just a quarter unit ccll except that the

top surface was traction free. Hence, the normal displaccment “v™ was not constrained (o be

constant along the top. For shear load all boundary displacements were constrained to follow the

deformation u = cy and v = cx. Consequently, the boundaries remained straight after

deformation for shear loading.

For flexure loads the top and bottom surfaces of the model were traction free. A linear

variation of normal displacements were imposed on left and right ends of the model.

Results and Discussion

There are two types of results which will be discussed. The first will illustrate the effect

of specimen thickness on effective moduli. The second will illustrate the effect of unit cell

location on stress distributions.

Effective Moduli

For nominally simple deformation states, the effective engineering properties are expected

to converge to constant values as the specimen thickness increases. Figure 3 shows the variation

of the normalized effective E,. Figure 3a shows the variation of the average E, with the aumber

of unit cells. The E,_ is normalized by the E, for an infinite array of unit cells modeled using

conventional finite elemeats. - The three curves were obtained using conventional finite elements

and 8-node and 12-node multi-field macro elements. The 8-node macro element must be

inherently a little too stiff, since it converges to 2 value approximately one percent too large.

The 12-node macro element agrees very well with the conventional finite element results. For

8 unit cells through the thickness the effective E, is within about one percent of convergence.

This indicates that a specimen would need to be 8 unit cells thick to give an cffective £ within

49



onc percent of a very thick specimen. Figure 3b shows the variation of the cffective E, with
position for a configuration which has eight uait cells through the thickness. The effect.ve E,
for each quarter unit cell was calculated based on the strain cnergy in the region. This is not a
rigorous definition, but it does offer some insight. The figure shows that the boundary quarter
unit cell is about 18 percent softer than an interior quarter unit cell. The next quarter unit cell
is about 5 percent too stiff. The third quarter unit cell has almost exactly the same stiffness as
cells which are much further from the boundary. There is an obvious boundary effect, but it dies
out very quickly.

Figure 4 shows the effect of model size on normalized effective shear modulus G,,.
In contrast to E,, the shear modulus converges from the stiff side. This difference is a
consequence of the boundary conditions imposed. For E, there were free surfaces. The traction
free condition permitted warping deformation to occur more easily near the free surface than in
the intedior, so the boundary caused softening. In contrast, all of the finite size shear specimens
had specified x- and y- displacements over the entire boundary. This fully constrained boundary
deformation resulted in larger effective G,, for smaller specimens. Figure 4 aiso shows that
8-node macro elements perform poorly in shear. The 12-node macro elements perform quite
well. It is interesting to note the distribution of the strain energy in a ﬁnitevsizc shear model.
The bar chart in Fig. 5 shows the strain energy in each quarter unit cell for a 3x3 array of unit
cells. The effect of the boundary on the strain energy distribution is obviously quite complex.

Figure 6 shows the variation of normalized flexural modulus with model size. The
flexural modulus is defined to be (flexural stiffness)/I, where [ = the second moment of the

area. The flexural modulus in Figure 6 is normalized by the value for a configuration which 1s
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ten cells thick. The flexural modulus converges more slowly than the exteasional modulus. The

12-nodc macro element pecforms very well. The 8-node macro element is a little too stiff.

Srress Distributions

Figures 7-9 illustrate the cffect of a free surface on stress distributions. Distributions are

shown for extension, shear, and flexure. The stresses shown are evaluated with respect to the

xy (global) coordinate system.

Figure 7 shows the stress distributions for extenﬁion loading for three umt cells from two
different configurations. One configuration had two unit cells through the thickness. The other
had six unit cells through the thickness. The locations of the unit cells considered are indicated
by shading in the figures. The waviness of the x-direction tow and the inhomogeneity causes a
complicated variation of all three stresses. The ¢, variation in the longitudinal tow is dominated
by flexure induced by tow straightening, as shown by the locations of. maximum and minimum
o,. The o, is largest where the tows contact. The a,yis largest where the tow rotation is largest. -

There are both striking similarities and differences in the stress distributions for the three
unit cells. Figure 7 shows that the interior and exterior unit cells have very different stress
distributions. There is .obviously a significant free surface effect. The exterior unit celis in
Figure 7 have very similar distributions for. all three stress components. This suggests that for
extension load the response of the exterior unit cells is not very sensitive to the total specimen
thickness.

The interior unit cell exhibits almost the same symmetries that one would expect from
a cell embedded inside an infinite array. Also, the interior half of the exterior unit cells has
stress distributions which are very close to those for the lower half of the interior unit cell.

Apparently the frec surface effect does not propagate very far into the interior.
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Figure 8 shows the stress distributions for shear loading. Single unit cell and 3x3 unit
ccll conligurations were studied. Oaly the a, and Oy dis ributions arc shown, since o, was quite
small. In this case there are no free surfaces. (Displaccments were specified along the entire
boundary.) As was the case for extension, the iterior and exterior response is different. The
interior unit cell is located in the middle of the finite element model. Hence, the symmetries
exhibited by the interior cell do not indicate the attenuation of boundary cffects. In contrast to
extension load, Figure 8 shows that for shear load the response of the boundary unit cells is very
sensitive 1o total specimen size. Further studies are needed to determine the boundary layer
thickness for shear loads.

Figure 9 shows stress distributions for flexure loads. Only exterior unit cells are
compared. The single unit cell model was subjected to a combination of extension and flexure
so that the loading would be comparable to the exterior unit cell of the thicker model. The
thicker model was subjected to pure flexure. Both models have free surfaces at both the top and
bottom. The maximum o, does not occur at the free surface. This is because local flexure of the
wavy fiber tow as it tries to straighten attenuates the o,. The top halves of the two unit cells in
Figure 9 have very similar o,, oy, and g, distributions. The lower halves exhibit much more
differences. This is not surprising since the lower surface of the single cell is traction free but
the lower surface of the cell from the thicker model is not. These results further indicate that
there is a free surface effect (in this case, from the lower surface of the single unit cell model),
but that the boundary layer is quite small. Finally, it should be noted that the stresses were lower

for the flexure case than for the extension case even though the maximum nominal axial strain

was .001 for both.
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Conclusious

Boundary cffects were studied for woven composites subjected (0 in-planc extensica,
shear, and flexure. Effective moduli and stress distributions were calculated for configurations
ranging from very thin to very thick. Only two dimensional models were studied. Since woven
textiles are really threc dimensional, these two dimeasional results should oaly be interpreted
qualitatively. Boundary effects were significant both in terms of stiffness and stresses.
A specimen thickness of 6-8 unit cells was required to obtain moduli within about 2% of that
for very thick specimens. For extension and flexure loading the stress distribution in exterior
unit cells were quite insensitive to total specimen thickness. There appeared to be a charactenstic
response of boundary celis. Also, the boundary effect did not propagate very far into the

interior. The response for shear load was more complex than for extension and flexure. Further

work is needed to characterize boundary effects for shear loads.

References

1. Whitcomb, J.D. "Three-Dimensional Stress Analysis of Plain Weave Composites,” in

Composite Materials: Fatigue and Fracture (Third Volume), ASTM STP 1110, T.K.

O'Brien, Ed., Philadelphia: American Society for Testing and Mateﬁals, pp- 417-433.

2. Paumell, P., A. Hassim, and F. Léné. La Recherche Aérospatiale, 1:1-12 (1990).
3. Paumell, P., A. Hassim, and F. Léné. La Recherche Aérospatiale, 6:47-62 (1991).
4. Ishikawa, T. Fiber Science Technology, 15:127-145 (1981).

5. {shikawa, T., and T.-W. Chou, J. Matenal Science, 17:3211-3220 (1982).

6.

Kriz, R.D., J. Composites Technology & Research, 7:55-38 (1985).

53



Avery, W.B., and C.T. Herakovich. A Study of the Mcchanical Bchavior of a 2D

Carbon-Carbon Composite, Virginia Polytechnic Institute and Statc Universitly, Interim

Report 66 (1987).
Whitcomb, J.D., and K. Woo. "Enhanced Direct Stiffness Method for Finite Element

Analysis of Textile Composites,” CMC Report No. 92-17, Texas Engineering

Experiment Station, Texas A&M University, (1992); submitted for publication in Journal

of Composite Materials.

54



Resin pocket

ton.

loca

ith

Figure 1 Vaniation of cross section w

55



200

(a) Full unit cell

R
[E=
p N X
il : ||
—

(b) Quarter unit cell

Figure 2 Basic two-dimensional unit cell models.

56



1.02

Anfinitely rcpca[ing\ 8-node macro~

l.OO ----------- e g o s i T D
>
098
=
=
2 0.96
£
k= 0.94
S
S 0.92
S
b5 0.90
N
=
E 0.88
o t
P
0.86 |
084 i | | | | i |

0 2 4 6 8 10 12 14 16
Number of unit cells through the thickness of the configuration

(a) Average nomnalized E x vs number of unit cells through thickness.

Fig. 3 Nomalized extensional modulus Ey. Eight-node traditional elements
were used for the infinitely repeating unit cell case.

57



Normalized extensional modulus

1.00
a
b
095 c
d
0.90 C 5
f
g
085 h — midplane
0.80 { i 1 i | |
a b c d e f g h

Quarter unit cell

(b) Normalized extensional modulus vs. position in an 8-unit

cell configuration. (The sketch only shows four unit cells,
since the configuration is symmetric.)

Figure 3, completed.

58



1.160 )
1.150 N
1.140 {__ N
1.130 s
1.120
|

. S \_
10 \\,///
[} N

3
=
©
O
E
b= 1.100 1__ N ~._
(3] -~
= 1.090{ T~
E ool - N T ]
= 1.070 |
£
s 1.060 |
< 1050 _~ _—12-node macro
1.040} _ S
1.030 _8-nodc traditional e -
1.020 1 1 | { e

0.0 1.0 20 3.0 4.0 50 6.0 7.0

Number of unit cells through the thickness of the configuration

Fig. 4 Normalized shear modulus vs. number of unit cells through the thickness

of the configuration.(The number of unit cells is the same in both the
x- and y- directions).

59



1.05

Normalized
strain energy

4
4

0 deg tow direction

T~

Figure 5 Normalized strain energy distribution in 3x3 unit cell model subjected to shear load.
Strain energy in each quarter unit cell is normalized by that for an infinitely repeating
unit ccll array subjected to shear.

60



.00}

095

0901} 27
_\,'/’ ™ 8-node traditional
/L4

085 ‘

12-node macro

0.80

0.75

Normalized flexural modulus

0.70

0.65 | | { 1 N I |
10 20 30 40 50 60 70 80 90 100
Number of unit cells through the thickness in the configuration

Fig. 6 Normalized flexural modulus vs. number of unit cells through the .

thickness of the configuration. Results were normalized with the
flexural modulus for a ten unit cell model.

61



Stress, Pa

e 1.600c+008
(1) Top unit cell of model with two igggccﬁg
unit cells through thickness. L 15004008
. ) 1.000e+008
8.500e+007
7.000e+007
5.500e+007
4.000e+007
2.500e+007
1.000e+007
-5.000e+006

“‘J;:-_‘._/,—":'_ - - ) - ‘ o \\.\;_‘ =
(it) Exterior unit cell of model with six
unit cells through thickness.

(111) Interior unit cell of model with six
unit cells through thickness.

(a) Axial Stress

Figure 7 Stress contours for a two dimensional model of a plain weave composite
under extension ( nominal axial strain = .001).

62



(1) Top unit cell of model with two
untt cells through thickaess.

(1t) Exterior unit cell of model with six
unit cells through thickness.

(i) Intenor unit cell of model with six
unit cells through thickness.

(b) Transverse Stress

FFigure 7, Continucd.

63

pAnnancag

puavevegy

N Iryy

R

ENIZLIA
A 5

Stress, Pa

3.100e+007
2.645e+007
2.191e+007
1.736e+007
1.282e+007
8.273e+006
3.727e+006
-8.182e+005
-5.364¢+006
-9.909¢+006
-1.445e+007
-1.900e+007




Stress, Pa

4.000e+007

3.273e+007

—

545e+007
818e+007
.091e+007

.636e+006

3

636e+006

273e+007

-1.091e+007

-1.818e+007

-2.545e+007

3

-4.000e+007

1
1

2
3

-..* .

ith two

(1) Top unit ccll of model w

unit cells through thickaess.

e, 4’:,:
LA

six

(ii) Exterior unit cell of model wi

pesry

L
®,
\ h.h-\.:-ﬂ

unit cells through thickness.

X

(111) Intecior unit cell of model with s

kness.

unit cells through thic

(c) Shear Stress

oncluded.

¢c7.C

Figur

64



Stress, Pa

£.000e+006
6.545¢+006
5.091e+006
3.636e+006
2.182e+006
7.273e+005
-1.273e+005
-2.182+006
-3.636e+006
-5.091e+006
- - - -6.545¢4006
(ii) Exterior. Unit Cell of a (3x3) unit cell model -8.000c+006

i R Y L

11

T3

(iit) [ntedior Unit Cell of a (3x3) unit cell model

(a) Transverse Stress

Figure 8 Stress contours for a two dimensional model of a plain weave
composite under shear. (nominal shear strain = .001)

65




Stress, Pa

| | 4.000e+007
3.666e+007
3.332e+007
2.998e+007
2.664e+007
2.330e+007
1.995¢+007
1.661e+007
1.327e+007
9.932e+006
6.591e+006
3.250e+006

(1) Interior Unit Cell of a (3x3) uait cell model

(b) Shear Stress

Figure 8, Concluded.

66



Stress, Pa

1.200e+008
1.085¢+008
9.691e+007
8.536e+007
7.382e+007
6.227¢+007
2 5.073e+007
S 3.918e+007
2.764e+007
1.609¢+007
4.545e+006
-7.000e+006

(1) Single Unit Cell

T

(11) Extenior Unit Cell of a (3x3) unit cell model

(a) Axial Stress

Figure 9 Stress contours for a two dimeansional model of a plain weave
composite under bending. (nominal axial strain at top surface = .001)

67



2.750e+007
2.250e+007

Stress. Pa

1.750e+007
1.250e+007

250e+007

-1.750e+007

2

-2.7150e+007

7.500e+006
2.500e+006
-2.500e+006
-7.500e+006
-1.250e+007

]

(1) Single Unit Cell

| (11) Exterior Unit Cell of a (3x3) unit cell model

(c) Shear Stress

68

Figure 9, Coacluded.



Chapter: 5

EVALUATION OF HOMOGENIZATION FOR GLOBAL/LOCAL STRESS
ANALYSIS OF TEXTILE COMPOSITES

Abstract

Globalflocal analysis is essential for textile composites because of their unusually large
microstructure. Homogenized engineering properties were used in this study to obtain global
solutions. The response of a local region was approximated by several fundamental strain or
stress modes. The magnitudes of these modes, which were determined from the global solutions,
were used to scale and superpose solutions from refined analyses of the fundamental modes, thus
obtaining a refined local solution. Results from numerical experiments showed that the use of
homogenized engineering properties often results in significant errors in prediction of global

response, especially at boundaries. Also, the local predictions were very sensitive to the choice
of fundamental modes.

Introduction

Recently there has been an increased interest in textile composites because of potential
increases in damage tolerance and decreased cost relative to tape laminates. These composites
consist of a textile preform which is impregnated with resin. The interlacing used in making a
preform can be accomplished by weaving, braiding, or knitting. Figure 1 shows examples of two
weave architectures: a plain weave and a 5-harness satin weave. (The resin pockets are removed
in the figure so that the fiber tows can be seen.) Textile composites all have very large
microstructure compared to traditional tape laminates. In fact, the "microstructure™ can be of
the same scale as some of the structural dimensions. .

One of the techniques proposed for analyzing textile composite structures is to use
homogenized engineering material properties or some other measure of effective properties for
a global analysis. This avoids the impossible burden of modeling the microstructure discretely
in a structural model. To determine the details of the stress and strain distributions, subsequent
analyses are performed using a refined model of a representative unit cell. The boundary
conditions for these subsequent analyses are determined from the results of the global analysis.
Such analyses have been discussed previously (e.g., References 1-4). This multi-level procedure
could be considered a global/local method and will be referred to as such herein. References 1
and 3 discussed the accuracy of this procedure if one uses special elements (referred to as macro
elements) for the global analysis. However, this author is not aware of any study which
evaluated the accuracy of a global/local procedure for textile composites based on using
homogenized engineering properties for the global analysis.
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The objective of this paper is to describe two global/local procedures which use
homogenized engineering material properties to expedite giobal stress analysis of textile
composites and to determine the errors which are inherent in such analyses. One of the key
questions is whether the use of homogenized engineering properties is adequate when the
microstructure is large. To simplify the discussion and .numerical experiments, only
two-dimensional models will be examined. Admittedly, textile composites are fully 3D in their
geometry, but the trends determined from 2D models are expected to be qualitatively correct.

In the following sections the theoretical basis will be described first. Then the

configurations studied will be described. Finally, the results of the numerical expenments will
be discussed.

Theory

This section will describe the global/local procedures used. Figure 2 shows a schematic
of the global/local analysis procedure. In this sketch the shading identifies the region which will
be analyzed further using 2 local model. The region to be analyzed using a local model is shown
isolated from the rest of the global model. After completing the global analysis, the boundary
nodal displacements (u;, v;) and forces (Fi, F;) are known. This boundary informztion is used
to determine the appropriate loading conditions for a refined local model. There are many
possibilities for determining these boundary conditions. In this particular study the boundary
information was used to quantify the magnitudes of selected fundamental sirain or stress modes.
Details of the various steps are discussed in the following subsections. First, the term
homogenized engineering properties will be defined. Then the fundamental Macroscopic strain

and stress modes will be described, including an explanation of how the magnitude of the modes
were determined.

Homogenized Engineering Properties

A unit cell is the basic building block which can be used to synthesize a woven
composite. In this paper the woven mats are stacked symmetrically, so the unit cell consists of
one wavelength of two mats. Homogenized engineering properties for use in the global znalysis
were determined by analyzing an infinite array of unit cells subjected to macroscopiczlly constant
stress states. Hence, every unit cell in the array experiences the same deformation. Periodic
boundary conditions were applied to a single unit cell to make it behave as though it was
embedded within an infinite array. Details about the periodic boundary conditions can be found

in Reference 5. The homogenized engineering properties were obtained by equating energies in
the homogenized medium to that in the actual unit cell.

Fundamental Macroscopic Strain and Stress Modes

In the current study the local model consisted of a refined mesh of a unit ceil. In general,
the local model could be smaller or larger. The loading for this refined unit cell wzs determined
from the nodal displacements (u', v) or forces (F, Fi) in the global modzl at the nodes which
surround the region of interest. The local model typically has many more noczs aiong the
global/local boundary than the global model. Hence, the dimensionality oi the loczi moczl along
the global/local boundary must be reduced. One technique to reduce the dimensionaiiiy 15 10
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limit the response to a few macroscopic strain or stress modes. In this paper the response of the
local region was characterized in terms of five strain or stress modes. These modes are:

Strain modes:

[,
(-]

constant Macroscopic e,

p

<, constant Macroscopic ¢,

c;, : constant Macroscopic e,

¢?,: constant gradient of macroscopic ¢, with respect to y
ey, : constant gradient of macroscopic ¢ with respect to x

Stress modes:

ol constant Macroscopic o,
o, constant mMacroscopic o,
od, : constant Macroscopic o,
c;,: constant gradient of macroscopic o, with respect to y
o,,: constant gradient of macroscopic o, with respect to x

There are interior and exterior versions of some of these modes. There are neighboring
unit cells on all sides for interior modes and on only two sides for exterior modes. Figure 3
shows deformed finite element meshes which illustrate the five interior stress modes. The
shaded rectangles indicate the original mesh size and shape. The interior modes were used for
analyzing interior cells. A mixture of interior and exterior modes were used for analyzing

exterior cells. The mix is listed below for displacement (strain modes) and force (stress modes)
based superposition.

Strain Modes Stress Modes
Mode Version Mode Version
e interior o2 exterior
e interior o, interior
es,  interior oy,  interior
2,  exterior o0,  exterior
2,  interior o),  interior

Only a few exterior modes were used. This is because the free surface of the exterior cell was
a y = constant line. Some exterior modes, such as a a,“ mode, do not exist for such a cell.
The technique for imposing boundary conditions for the various modes is described in

References S and 6. The techniques used to determine the magnitudes of the modes is discussed
in the following two sections.
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Strain Mode Superposition The global/local displacement field was assumed to be
describable by the following bi-linear approximation in x and y.

u=a+bx+cy+dxy

(N
v=e +fx+gy+hxy

The eight constants a-h can be determined by requiring that equation | match the displacements
at the corner nodes of the local region. The macroscopic strain modes can be obtained by
differentiation of the equations. The equation for &, was further simplified by evaluating it at
the unit cell centroid and taking it to be constant for the entire global/local boundary. This

resulted in five strain modes: &, €°,, €,,, €%, and € ,. In particular,
X Yy Xy iy y.x

€ =be«dy
e,=g1'hx (2)

e =c+f

The coefficients b, d, g, h, and c+f are the magnitudes of the five fundamental strain modes.

Stress Mode Superposition This technique is similar to the strain mode superposition
method. In this case the nodal forces from the global analysis are used to determine the
magnitudes of five fundamental stress modes. These fundamental modes were described earlier.
This section will describe how to determine the magnitudes of these modes.

The first step is to express the tractions T, and T, acting along the global/local boundary
in terms of the stresses.

T =on « o,

(3
T, =0,

+~on
”l‘ Yy

The relationship between these tractions and the equivalent nodal forces for a single
element can be derived using the principle of virtual work. The result is

F = [T N(s)ds
f (4)

F, = f T,N,(s)dS

where
i =1, number of boundary nodes

N. = interpolation functions

[n this paper the local region is rectangular and aligned with the global xy axes so dSis
either dx or dy. The total nodal forces for each node along the entire boundary are obtained by
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summing the contributions from each element. Next the average s(resses for the entire local
region are assumed to be given by

a =a+by
o, =c+dx A (5)

0‘,=C

These expressions for stresses are used in equations 3 and 4 to determine the equivalent
nodal loads. Since there are many more known nodal forces (and hence more equations) than
unknown coefficients (a-€), a least squares procedure is used to solve for the unknowns.

Once the coefficients are determined, they are used to scale and superpose the
fundamental stress modes described earlier.

Confisurations

A very stubby beam was subjected to three types of loading: constant moment, distributed
transverse shear at the end, and distributed transverse loading along the lower surface. More
precisely, the conditions were: (see Figure 4)

Constant moment: Transverse end load: Distributed lateral load:
u(0,0) =v(0,0) =0 «(0y) =v(0,y) =0 u(0y) =v({0,y) =0
%(-453) - -0l T,(4.5.) = constant | T,(x,-3) = constant
4 ]

Z@4.5y) =01
dy

The beam consisted of 3x3 array of unit cells. The ratio of wavelength to mat thickness
gives a measure of the waviness of the fiber tows. In this study this ratio (xfh) was 1/3.
The following material properties were assumed:

Fiber tow {Ref. 6] Matrix pockets Homogenized properties
E_=206.900 GPa E =345 GPa E_ =36.494 GPa

E = 5.171 GPa E,=3.4S GPa E = 5.225 GPa

E = 517 GPa E, (=345 GPa E, =36.494 GPa-
vq=0.25 vq=0.35 vy = 1.078

v,z=0.25 vx=0.35 Vo =0.154

v, =025 v =035 v, =0.154

ny =2.386 GPa Gz’ =128 GPa Gn =3.145 GPa

Gy_z =2.386 GPa G- 128 GPa G, = 3.145 GPa

G,, =2.386 GPa G_ =128 GPa G, =2.000 GPa

Figure 4 shows typical meshes which were used in this study. The reference mesh used
5041 nodes and 1728 bi-quadratic elements to model nine unit cells. The homogenized property
mesh used 217 nodes and 36 bi-cubic elements. The refined local mesh had 593 nodes and 192
bi-quadratic elements. The shading indicates the two unit cells (one interior and one exterior)
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which were analyzed using global/local analysis. Obviously, there are far fewer equations

involved in the global/local analysis than in the conventional analysis used to obtain a reference
solution.

Results and Discussion

The errors in a global/local analysis are the cumulative result of errors at the various
stages in the procedure. To improve on a procedure requires that one know where errors are
being introduced. Accordingly, the following discussion will begin with an evaluation of the
predicted global response and finally examine errors in the predicied local stress distributions.

To help evaluate the accuracy of the global analysis, the deformation of the reference
and homogenized property meshes were compared. Figure 5 shows deformed finite element
meshes for the three load cases. The meshes are overlaid to aid the comparison. The
inhomogeneity in the reference mesh causes local distortions which should not (and do not) occur
when homogenized properties are used. In Figure 5a (for a constant moment) the agreement
appears excellent, except for the local distortion. This apparent accuracy is an artifact of the
loading, which consisted of specified normal displacements on the left and right sides. The strain
energy (and required moment) in the homogenized property mesh is 40% too large. In Figures
5b and Sc the loading consisted of specified forces. The agreement between the meshes is fair
for these cases. Comparison of the strain energies in the reference and homogenized property
models gives a scalar measure of the agreement in the predictions. The error in strain energy
for the entire model was quite small (-6.6% for the transverse end load case and 2.6% for the
distributed lateral load case). Also shown are magnified views of one interior and one exterior
unit cell for each load case. (See Figure 4 for the location of the cells.) To expedite the
comparisons, the rigid body motion of the unit cells was subtracted before plotting. Removing
the rigid body rotation permits the unit cells to be aligned for comparison. When removing the

rigid body rotation, it is important that the linear definition of rotation (i.e. rotation = X -93)

ox
be used. For example, consider the beam in Figure 6. The beam was subjected to a moment

at the right end. Contrary to appearances, all the unit cells have the same strain distribution.
If the rigid body rotation is removed using the linear rotation formula, the deformed meshes for
each unit cell will also be identical.

The errors in the strain energies for the individual cells are tabulated below :

Constant Moment Transverse End | Distributed Lateral
Load Load
Interior | Exterioc | Intecior | Exterior | Interior | Exterior
Reference 59520 415860 613764 46502 160320 68400
Homogenized 46152 599960 513120 394740 136956 66600
Error (%) 22 a4 -16 -15 -15 3

The simplicity of the loading in some cases allows one to explain the source of the errors. The
-22% error for the interior cell of a beam subjected to consiant moment resulted from the
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effective extensional modulus (which is what was used) being 22% smaller than the effective
flexural modulus. For the interior cell of a beam subjected to transverse end load, there is both
flexure and shear. The shear contribution to strain energy is calculated accurately but the flexure
contribution is again low by 22%, which resulted in an net error of -16%. For the exterior cell
of 2 beam subjected to constant moment the dominant deformation mode is extension. There is
also some flexure. The 44% error in strain energy resulted from using the effective extensional
modulus (which is based on infinite array analysis) throughout. in reality, the extensional and
flexural modulus for exterior cells is much smaller than the effective extensional modulus for
an infinite array. These errors illustrate the problems in using effective engineering properties
for this class of matenais.

As discussed in the theory section, the nodal displacements and forces were used to
determine the magnitudes of the fundamental strain and stress modes, respectively. There is
inherently some error in this approximation, regardless of the accuracy of the global analysis.
This is because in general the actual behavior cannot be matched by just the modes selected.
However, by calculating the magnitudes of the modes using the reference mesh, one obtains a
baseline approximation which is about as good as can be expected. Table 1 summarizes the
results. )

For pure bending the strain modes for the interior cell are identical for the two meshes,
but this is not a sign of accuracy, since the specified displacement loading required this idenuty.
There was a -33% error in the constant ¢, mode for the exterior cell. The other two non-zero
modes were exact, which again was due to the boundary conditions. The error in the stress
modes depended on the location of the cell and the particular mode. The importance of a
particular mode cannot be seen in Table 1 . The numbers in these tables are used to scale the

stress distributions from the fundamental solutions, i.e., o, =c* of where c* = magnitudes in the

table and of = stress distribution for the "a" mode. Both the ¢* and of must be considered
when determining the dominant modes for a particular load case. The dominant stress mode for
the interior cell was the gradient of o, mode, which was off by -10%. In contrast, the dominant
mode (constant ¢ for the exterior cell was off by 30%. For the transverse end load case the

H Q U 0 [ : - .0 0 0 ¢ 0 0
dominant modes were €5, €, 95, and o, for the interior cell and &2, €5, ¢;,, 05, 95, 2and o,

for the exterior cell. The largest errors in the dominant modes were for e, and o},. These
errors tended to be quite large. For the distributed lateral load case most of the modes were
significant. (The «;, and o2, modes were not significant.) The errors in the modes tended to
be larger than for the other two load cases.

The magnitudes of the modes in Tables 1(a) and 1(b) can be used to scale and superpose
displacements for the fundamental modes. These superposed displacements were determined for
interior and exterior cells. The deformed meshes are shown in Figures 7 and 8 for strain and
stress mode superposition, respectively. As was done in Figure 5, the rigid body components
were subtracted to make the comparisons of the unit cell deformations more accurate. The
thicker lines indicate the superposition results. The resuits labeled “Reference Superposition”
were obtained by using the reference mesh to determine the magnitudes of the modes. The
Reference Superposition” results show that even if a global analysis is exact, the local
deformation cannot in general be represented in terms of a few fundamental modes. Regardless
of the type of loading, the interior behavior is more closely approximated than the exterior
behavior. Strain mode superposition appears t0 be more accurate for interior cells. In contrast,
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stress mode superposition appears to be more accurate for extedor cells.

The next step was to determine the accuracy of the calculated stresses. Three types of
solutions were examined:

1) the reference solution

2) the global/local solution in which the global analysis used the reference mesh to
determine the modal components

3) the global/local solution in which the global mesh used homogenized material
properties.

The results are presented two ways. First, just the peak stresses for each load case and analysis
type will be summarized in tabular form and then 2 few stress contour plots will be discussed.

The peak stresses are tabulated in Table 2. The errors in the global/local stress
calculations varied over a wide range. The simplicity of the loading for the constant moment
case eliminated one source of error... that related to determining the average strain field using
five strain modes. The second potential source of error was in determining the local stresses
from the fundamental strain modes. This was no problem for the interior cell; the error was
essentially zero. In Reference 7 it was shown that unit cells at least one ceil away from a free
surface behaved very much like ones embedded in an infinite array. Since the fundamental strain
modes (which included two bending modes) were based on infinite arrays, the accurate
prediction is no surprise. In contrast, the errors are significant for the exterior cell. Even when
the refined reference mesh was used to determine the magnitudes of the different modes, the
errors were not negligible. The stress mode superposition method tended to perform better for
exterior cells than the strain mode method. The response of an exterior cell is complex and
hence poorly represented by the particular few strain or stress modes considered. The errors due
to modal reduction increased with the complexity of the applied load. For the distributed lateral
load case the errors were significant for the interior cell and intolerable for the extenior cell.

Obviously, the interior and exterior unit cells experience different loading and different
modes are dominant for the two cells. Hence, the larger errors for the exterior cell could be
due to errors associated with particular modes, rather than the location of the cells. This was
checked in an approximate sense by adding a layer of unit cells to the top and bottom of the
current global model. Global/local analysis of this thicker beam was performed for transverse
end load case. The errors in the peak stresses for the unit cell which had been on the exterior
for the thinner model were now much less. This suggests that the behavior of an exterior cell
is inherently more complicated than that of an interior cell. -

Examination of errors in predicted peak stresses gives only a limited appreciation of the
accuracy (or inaccuracy) of the predictions. Figures 9 and 10 show stress contours for the
transverse end load case for interior and exterior cells. The contours for the interior cell (Figure
9) for the global/local analysis match very closely with the reference solution. The contours for
the exterior cell (Figure 10) are not as close, but still seem to agree fairly well, even though the
errors in the peak stresses are up to 26%. Peak stresses will probably not be useful for
predicting failure, since they occur at a point (or at least a very small region). A critical stress
criterion will probably have to consider the average stress in some characteristic volume. The
visual similarity of the contours in Figures 9 and 10 suggests that when global/local analysis is
used, the errors in a practical failure criterion might not be as bad as the errors in a peak stress
criterion. This visual evaluation of the similarities in the contours in Figures 9 and 10 1s
subjective and could be wrong. A mare objective method is badly needed.

One technique which was considered was plotting the tow area which had a stress greater
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than a particular value. The reasoning is that if a large stress occurs over only an extremely

small region, then the stress calculation is suspect, since the scale is too close to that of the fiber
dianeter. Figures 11 and 12 show results for g, for an interior and exterior cell, respectively
for the transverse end load case. Two graphs are shown in each figure : one which includes the
entire stress range, and the other which zooms in on the peak stress region. Results from the
four analyses agree quite well for the interior cell. Although the homogenized superposition
technique has a 15 percent error in predicting the peak stress, the distribution is predicted fairly
well. If the failure criteria requires that a pacticular volume be ata critical stress, the prediction
would be in error about 15 percent for very small critical volumes, but the error would be less
for larger critical volumes. Figure 12 shows analogous results for the exterior cell. The errors
are larger than for the interior cell, but the trend is the same, ie. for larger critical volumes the
error in failure prediction is less than for very small critical volumes.

Concluding Remarks

Global/local stress analysis techniques based on the use of homogenized properties for
the global analysis were evaluated. A very stubby beam containing nine unit cells was subjected
to three types of loading. Considering the strong macroscopic stress and strain gradients relative
to the microstructure these were probably fairly severe tests. For force type loading the overall
deformation of the beam was not always predicted very well using homogenized properties. For
larger configurations with more unit cells (and hence more homogeneous microstructure) the
accuracy is expected to be considerably better. The accuracy of the calculated stresses was not
too bad for interior cells, but was poor for exterior celis. This is not surprising based on earlier
work on free boundary effects.

Regardless of how a global solution is obtained, there is considerable difficulty in using
the crude nodal force and displacement information from the global mesh to determine
appropriate load conditions for the local mesh. In this paper a modal technique was used. For
the constant moment and transverse end load cases this technique performed well. For the more
complicated case of distributed lateral load the performance was only fair for the interior cell
and poor for the exterior cell, even when a refined global mesh was used.

There are several steps (and inherent approximation at each step) in global/local analysis.
This study was just a beginning. Further work is needed in several areas. Alternatives to
homogenization, such as the macro elements in References 8 and 9 need to be evaluated. Other
techniques for imposing the global solution on a local model also need evaluation, including
additional types of fundamental modes and the use of smaller local regions. Finally, more
realistic configurations need to be identified and studied. Otherwise it is difficult to assess the
significance of the errors in the various global/local techniques for practical applications.
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Reference solution Homogenized superposition

Peak magnitude:  2.47E+08 Peak magnitude : 2.11E+08
Error : -15%
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Error : -16%
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Error : -14%

Peak magnitude :

Figure 9 Comparison of stress distributions of reference solution and homogenized strain mode
superposition for the interior cell for transverse end load case .
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Chapter: 6

Simulation of Progressive Failure in Plain Weave
Textile Composites

Abstract

Three-dimensional finite element analysis was used to simulate progressive failure
of a plain weave subjected to in-plane extension. The loading was parallel to one of the
tow directions. The effects of various characteristics of the finite element model on
predicted behavior were examined. More numerical studies and comparisons with
experimental data are needed to establish guidelines for accurate progressive failure
prediction. Also the sensitivity of the predictions to the tow waviness was studied. The
predicted strength decreased considerably with increased waviness.

Introduction

Textile composites consist of interlaced fiber bundles which are then impregnated
with a matrix material and cured. Figure 1 illustrates the architecture for a plain weave
composite. The interlacing of the fibers offers the potential for increased through-
thickness strength There is also the potential for reduced fabrication costs, since fairly
complicated shapes can be formed using textile machinery. One disadvantage of textiles
is the difficulty in predicting their performance. The complex geometry makes detailed
stress analysis quite challenging. The early analyses were based on modified laminate
theory. (eg. References 1,2). In recent years there have been a few attempts to
discretely model the fiber bundle architecture and predict internal stress states (eg
References 3-10). Reference 10 presented a particularly interesting progressive failure
analysis of a plain weave composite. The results in Reference 10 consisted of nominal
stress strain curves. The response of the composite was almost linear for in-plane
extension and highly nonlinear for in-plane shear. the nonlinearity was primarily a result
of progressive damage. However, little information was provided on damage evolution
and load redistribution within the composite during the loading process. Also, there was
no indication of the sensitivity of the predictions to mesh refinement or other approxima-
tions inherent in such analyses.

This paper has two objectives. The first is to evaluate the sensitivity of predicted
progressive failure to quadrature order, mesh refinement, and choice of material
degradation model. The second objective is to describe the nature of the progressive
failure process for two weaves with very different waviness. Loading consisted of a
nominally uniaxial stress along one of the fiber tow directions. Only mechanical loads
were considered in this study. To simplify the response the composite was assumed to
consist of an infinite number of unit cells in all three coordinate directions.
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The following sections begin with a description of the basic theory used for
progressive damage modelling. Then the configurations will be described. Finally the
results from the numerical simulations will be discussed.

Theory

There is no "right" way to model damage evolution that is also practical. It is not
feasible to discretely model the damage, so approximation is unavoidable. Perhaps the
simplest procedure to account for damage in a finite element model is to modify the
constitutive matrix at the quadrature points of a numerically integrated finite element.
No history effects are included, so the analysis of the loading becomes a series of elastic
analyses. Of course, there are many possibilities for how to modify the constitutive
matrix. Three techniques were used herein. The first method considered the material
totally failed (i.e. the entire constitutive matrix was reduced to essentially zero) when any
allowable stress component was exceeded. This method will be referred to as the non-
selective discount method. Except as noted, this technique was used in the analyses.
The second technique selectively reduced the rows and columns of the constitutive matrix
according to the particular stress allowable which was exceeded. The third technique
selectively reduced the engineering moduli according to the particular stress allowable
which was exceeded. The scheme for this selective reduction was based on References
10.

Figure 2 gives a flowchart for the progressive failure analysis. First a linear
analysis was performed. Based on the calculated stresses, the initial load was scaled back
so that failure would occur only at points which were within two percent of the maximum
normalized stress. (The stresses were normalized by the respective strengths.) The
constitutive matrix was modified at the failure points. Residual forces were calculated
and used to determine the incremental displacements required to restore equilibrium.
The total displacements were updated and used to determine the new stresses. If no
further failures occurred at the current nominal strain state, the nominal strain was
incremented to cause failure. This procedure was repeated until there was total failure
or at least loss of most of the original stiffness.

Configurations

The fiber bundles or tows in the models were generated by translating a lenticular
cross-section along a sinusoidal path. The waviness ratio is defined to be the ratio of the
woven mat thickness to the wavelength. Except where indicated otherwise, the results
presented are for a waviness ratio of 1/3. More details about the mesh geometry can be
found in Reference 8. The following subsections describe the finite element meshes, the
boundary conditions, and the material properties.
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Einite Element Meshes

Symmetry in the material and loading was exploited so that only 1/32 of a unit cell
had to be modeled. A wide range of mesh refinements were used, as shown in Figure 3.
The crude mesh had only 4 elements and 43 nodes. The most refined mesh had 192
elements and 1049 nodes.

Boundary Conditions

The periodic boundary conditions for a complete unit cell are quite simple. The
appropriate boundary conditions for a 1/32 unit cell are a bit more complicated. Deriva-
tion of the periodic boundary conditions is somewhat tedious, so details will not be given
here. Details can be found in Reference 8. The periodic conditions are listed below.
Figure 3 shows the coordinate system assumed.

wWa2,y.z) = ug v(x.a/2.z) = constant
u0.y.z) =-u(0.y.-z) v(0.yz) = v(0.y.-2)
u(x.0.z) = u(x.0,-z) v(x,0z) =-v(x.0.z)

w(x.y.c/2) = constant
w(0.y.z) =-w(0.y.-z)
w(x.0.z) =-w(x.0.-2)

The load was controlled by specifying the magnitude of u,.

Material Properties

The unit cells contains two "types of materials: the tows and the matrix pockets.
Relative to the material coordinate system, the properties of the tows are invariant
(before damage occurs). Of course, the properties of the tows are needed in the global
coordinate system. Fourth order tensor transformation formula were used to perform
the required calculations. The rotation angles to be used in these formulas were
obtained at each quadrature point by using interpolation. This procedure was shown in
Reference 8 and 11 to be preferable to using a single angle for the entire element. The
particular properties used are listed below. These properties are from Reference 12.
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Jow propertics Matrix propertics
Modulus Strength Modulus Strength
E;; 15427 GPa 23420 MPa 3.45 GPa 84.85 MPa
Ep, 1080 GPa 56.6 MPa 345 GPa 84.85 MPa
E;; 1080 GPa 56.6 MPa 3.45 GPa 84.85 MPa
G, 747 GPa 487 MPa 128 GPa  101.00 MPa
G;; 147 Gpka 48.7 MPa 128 GPa 101.00 MPa
G,; 333 GPa 48.7 MPa 128 GPa 101.00 MPa

v, 0278 03s
vi;3 0278 03s

vy 0340 035

Results and Discussions

Most of the results in this paper illustrate the effects of characteristic of the finite
element model on the progressive failure prediction. The effects of quadrature order,
mesh refinement, and material degradation strategy will be considered first. Then the
effect of tow waviness on failure behavior will be discussed.

Figure 4 shows the effect of quadrature order on the stress-strain curve. The
peak stress obtained using 8 quadrature points (2x2x2), is 10 percent higher than that
obtained using 27 or 64 points. Although the peak stress is the same for 27 and 64
points, damage is predicted earlier when 64 points integration is used. This sensitivity is
not particularly surprising for at least two reasons. First, when more quadrature points
are used, the more extensive sampling is more likely to find the extremes in the stress
field. Second, when failure occurs within an element and the constitutive matrix
is modified, the element becomes inhomogeneous. The numerical integration effectively
fits a polynomial function to the variation of material properties. Since the properties
are very different in the failed and unfailed parts of the element, it is difficult to obtain a
goad fit. In fact, there is concern as to whether the assumed quadratic displacement
functions for a 20-node element are sufficient to obtain a reasonable approximation
regardless of the integration order.

Figure 5 shows the effect of mesh refinement on the predicted stress-strain curve
for two waviness ratios. The 4 element model predicts the correct trends, but is quite
inaccurate. The error is much worse for the large waviness ratio. For the 1/6 waviness
ratio, the 32 and 192 element models agree quite well. There is a considerable differ-
ence between the 32 and 192 element models for the 1/3 waviness ratio. Although the
response is quite brittle for both waviness ratios, there is no more non-catastrophic
damage before collapse for the larger waviness ratio.
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Figure 6 shows the effect of the discount factor on the stress-strain curve. The
stiffness terms at failed quadrature points were reduced to either 01. or .0001 of the
original value. Intuitively, one might expect to obtain the same results. Figure 6 shows
that there was no difference in the peak stress, but the response was very different when
there is considerable damage.

Figure 7 shows the stress-strain curves obtained using non-selective discount
method, selective reduction of rows and columns in the constitutive matrix (the stiffness
terms, not the compliance terms), and the selective method described in Reference 10.
The selective method described in Reference 10 predicts about a 21 percent higher peak
stress than the non-selective discount method.

Figures 8 and 9 show the effect of mesh refinement and waviness ratio on damage
accumulation during loading. The black region indicates the damage zone. The stress-
strain curve for a particular mesh is shown above the results for that mesh. The points
labeled A,B, and C, indicate the correspondence between the strain level and the damage
contours. Also indicated are the stress components which contributed to the damage
contour. The 4 element mesh does not perform well at all for the waviness ratio of 1/3,
but does a little better for the 1/16 waviness. The 32 element mesh performs reasonably
well for obtaining qualitative results. Further numerical studies are needed to determine
how close the 192 element mesh is to convergence. For the 1/3 waviness ratio the o4,
stress component dominates the damage development up to the point shown. For the
1/6 waviness ratio o5, plays a part, but there is also significant cracking of the 90 degree
tow due to g,,. Reference 6 had also noted a change in initial damage mode with
waviness ratio.

Concluding Remarks

Simulation of progressive failure in a plain weave composite is extremely complex.
Consequently, only approximate treatment is practical at this time. One of the goals of
this paper was to examine the effect of several approximations on predicted behavior.
The one obvious conclusions from this study is that the predictions are quite sensitive to
a number of decisions which must be made when assembling a finite element model.
Further numerical experiments and comparisons with experimental data are needed to
establish guidelines for accurate analysis of progressive failure. Another objective of this
paper was to describe the effect of tow waviness on damage accumulation. The results
suggest that the degree of waviness not only affects the stress at which damage initiates,
but also the type of damage which occurs.
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90° tow
(fall tow)

(a) A full unit cell.

(b) A single mat with matrix pockets removed.

Figure 1 Schematic of Plain Weave composite.
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Initial lincar analysis
Determine maximum failure index (F.L.)

——» Scale load so maximum F.I. = 1.02

Calculate stresses «

l

L—W- Failure at any quadrature points ?
Yes

v
Modify constitutive matrix
for all failure points

v
Calculate residuals

v
Solve to determine incremental
displacements

l

Update displacements

Figure 2 Flowchart of progressive failure analysis.
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192 elements and 1049 nodes

nd 221 nodes

32 elements a

nd 42 nodes

Mesh 1 :

4 elements a

Figure 3 Finite element meshes used to determine the effect of mesh refinement

on failure prediction.
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Chapter: 7

Effect of Assumed Tow Architecture on Predicted Moduli
and Stresses in Plain Weave Composites

Abstract

This paper examines the effect of assumed tow architecture on the predicted
moduli and stresses in plain weave textile composites. Two architectures are examined
which have a sinusoidal tow path and a lenticular cross-section. Three-dimensional finite
elements are employed to model a T300/Epoxy plain weave composite with
symmetrically stacked mats. Macroscopically homogeneous in-plane extension and shear
and transverse shear loadings were considered. Symmetries are exploited which
permitted modeling of only 1/32nd of the unit cell. Accounting for the variation of
material properties throughout each element is determimed to be necessary for accurate
prediction of stresses in the composite. For low waviness, the two tow architectures
examined are very similar. At high waviness, the stress predictions are much more
sensitive to the assumed tow geometry.

Introduction

As more demands are placed on structural materials, more complex materials
must be developed in order to satisfy these demands. Fibrous composites are being
employed for many of these applications. One type of fibrous composite which is
receiving increased attention is the woven compasite, which is constructed by grouping
the fibers into bundles called tows and weaving these bandles together to make preforms.
With the addition of a matrix material and curing, a woven composite is constructed.
Figure 1 shows a schematic of a plain weave composite.

Woven composites have recently been receiving considerable attention due to their

potential for improved properties compared with taditbonal laminated composites. Some
of these properties include an increase in impact woughness and higher specific-strength
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and specific-stiffness [1]. Other properties include the ability of near-net-shape
manufacturing capability [2,3] and a high resistance to damage and impact [4].

Unfortunately, the microstructure of a woven composite is highly complex making
it usually not cost effective to experimentally explore the effect of different weave
geometries [1]. In fact, it is not currently practical to model the actual tow geometry.
Idealization is mandatory. The idealization is critical, since the composite properties are
very sensitive to some aspects of the tow geometry [5]. Since the stress analysis problem
is too compiicated for the luxury of modeling insignificant details, the obvious goal is to
include just enough details in the idealized geometry to predict the most important aspects
of the composite behavior. One way to determine the necessity of modeling particular
details is to perform analytical studies which use various approximations of the tow
geometry and observe the effects of these approximations on predicted response (eg.
moduli and internal stresses). These analytical studies should be supplemented by
experiments. However, this paper will focus only on the analytical task.

The objective of this paper is to determine the sensitivity of predicted moduli and
internal stress distributions and failure initiation to one aspect of tow geometry: the
variation of tow cross-section along the length of the tow. There are basically two
categories of stress analysis methods which could be used for the study. One of these
is based on a modified form of laminate theory (eg. References [4,6-11]) and the other
is finite elements (eg. References {1,5,12-18]). The first category of analyses is only
suitable for modulus prediction and rough estimates of stresses. To fully evaluate the
accuracy of various approximations of tow geometry requires numerical analysis. Finite
elements are ideal for this task and were used in this study.

In this study, only elastic behavior of mechanically loaded specimens will be
considered. Residual stresses caused by differences in coefficients of thermal expansion
should be included in 2 later study.

Although there are many types of woven composites, plain weaves will be studied
in this paper because it offers sufficient complexity for the task at hand. The tows of a
plain weave are woven together as shown in Figure 1. The tows which run in the
x-direction are the warp tows. The tows running perpendicular to these are the fill tows.
In a balanced weave the warp and fill tows have the same geometry and material
properties. A balanced weave was used in this study.

The next section describes the assumed tow architectures. Next, boundary
conditions used with the finite element model of the infinite periodic arrays will be
described followed by a description of the material properties. Finally, the results of this
study will be presented followed by conclusions.
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determined for in-plane extension and shear and transverse shear. Included in this
examination was a study on the specification of material properties using the single angle
and multi-angle methods described earlier.

A coavergence study was performed for a WR=1/3 to determine a suitable mesh
for prediction of elastic properties and stress distributions for the two architectures.
Twenty node isoparametric hexahedral elemeats were used. The meshes used are shown
in Figure 5 for the translated and extruded models. Convergence of the elastic properties
for translated tows is shown in Figure 6. The translated moduli are normalized with
respect to the converged extruded model in order to also show the relative difference in
moduli between the two architectures. This figure also compares the multi-angle and
single angle methods of specifying material properties in the elements. As can be seen
from the figure, convergence of most of the elastic properties was reached with just 32
elements using the multi-angle method.

Convergence of the stress distributions is shown in Figure 7 for translated tows
using the multi-angle method. This figure shows the o, stress distribution in the tows
after subjecting the meshes to a2 1% e, strain. Even using the 454 model with 400
elements convergence was not reached. However, there was only a moderate change
between the 343 model with 192 elements and the 400 element 454 model. For this
reason, the 454 model will be assumed to be nearly converged and will be used to study
both the elastic moduli and stress distributions for the translated and extruded models.

A further comparison of the single angle and multi-angle method is shown in
Figure 8. This figure shows the o;; stress distributions in translated tows using single
and multiple angles in the elements for a mesh subjected to a 1% €4 strain. Due to
symmetry, the stress at the end of the tow as indicated by A should be zero, but as
shown in the figure, the predicted stress is not zero for the single angle method. In fact,
the highest stress in the tow using the single angle method is reported to be at A. If the
mesh were refined, the incorrect stresses would disappear; however, this would be
extremely costly using 3D finite elements. This indicates that the multi-angle elements
are essential to an accurate analysis of the composite. Therefore only the multi-angie
method will be used in for the following analyses.

The tow volume fraction vs. waviness ratio of translated and extruded tows is
shown in Figure 9. (Note that this is not the fiber volume fraction.) The difference
between the translated and extruded models increases with waviness. At WR=1/3, the
percent difference between the tow volume fraction is approximately, 4.5%. This is
significant because this alone will cause a difference in the predicted moduli of the
composite. Additionally, as the waviness approaches zero, it is seen that the volume
fraction for translated and extruded tows converge. Something else interesting to note
is that the volume fraction of the translated tow is constant with respect to changes in
WR. which seems unrealistic. The reason for this is that the volume of a wavelength of
the wanslated tow is simply the cross-section area times the wavelength.
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Figure 10 shows the differences in predicted elastic properties for weaves with
translated and extruded tows. At low waviness, the figure shows that the differences
between predicted elastic properties for translated and extruded tows are very siaall.
However, at higher waviness, the difference between extruded and translated tows is
more apparent. The difference is greatest for Ey. The translated model predicts a 6.8%
higher moduli than the extruded model at a WR=1/3. For WR< 176, the difference in
predicted moduli is less than 1% for all of the moduli.

Stress distributions are not as easily compared as the moduli due to the amount
of data which must be presented. For this reason only stresses which contribute
significantly to the predicted failure of the material will be presented. These stresses are
determined by normalizing the stress in a material with respect to its material strength.
Also, since the greatest difference occurs at a WR=1/3 for the three WR’s studied, only
stress distributions at this WR will be presented.

Three macroscopically homogenous single stress states were considered: o, 0y,
and o,,. These three loadings were imposed on the 1/32nd sub-cells shown in Figure 5
with the boundary conditions shown in Table 1. Stresses for the 1/8th sub-cell were then
generated using the appropriate factors given in Table 2.

Extension in warp direction (o, loading)

A o_ extensional load was applied to the 454 translated and extruded meshes in
Figure 5 using the boundary conditions shown in Table 1 so that a 1% &, macroscopic
strain was applied to the translated model. The same force need to apply the 1%
macroscopic strain was then applied to the extruded model. Since the stiffness is
different for the two architectures, the strains are differeat. Figure 11 shows the
predicted Tsai-Hill failure criterion for the warp tows. Only the warp tows are presented
because failure is predicted to initiate in the warp tows. Although the contours appear
very similar, the maximum failure criteria predicted by the extruded model is 22% higher
than that predicted by the translated model. This indicates that the translated model can
withstand 10% more load than the extruded before initial failure occurs. By examining
the maximum normalized stresses experienced by the warp tows, the stresses in the warp
tow which are the main contributors to failure were determined to be the ¢;; and o3;
stresses. Consequently, only these two stresses will be examined in the remainder of this
sub-section.

Figure 11 also compares the normalized oy, and g3; stress distributions predicted
in the warp tows with the translated and extruded models. As can be seen in Figure 11,
o, stress distributions in the regions of failure in the warp tows are very similar and
contribute little to the initial failure for the translated and extruded models. However,
near the edge of the tows one can see a more significant difference in the two models.
The translated model predicts a high oy, stress in the cross-over region as shown in
Figure 2. This is not seen in the extruded model in which parallel tows are separated by
a region of resin. This difference is interesting but somewhat insignificant since failure
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does not iniate in this region.

The oy, stress distribution indicates that initial failure is being caused primarily
by this stress. The tows are failing in the region where the warp tows in adjacent mats
are closest to one another because the warp tows are wanting to straighten and pull apart
from one another. This prediction should change drastically if the mats are simply
stacked instead of symmetrically stacked as assumed in this study. The extruded mesh
experiences a maximum oy, stress 10.3% greater than the translated mesh. Other than
this, there is no substantial difference in the warp tow stress distribution.

As stated earlier, the stress levels in the fill tows and resin regions of the
composite are uniteresting due to the relative size of the stress exhibited in these regions.
However, if thermal stresses were included in the analysis, these regions could become
very interesting.

In-plane shear (o, loading)

A g, shear load was applied so that a 1% ¢&,, macroscopic strain was experienced
by the 454 translated model in Figure 5. This load was then applied to the 454 extruded
model. Graphs of the Tsai-Hill failure criteria are shown in Figure 12 for the tows.
Note that only one tow is shown because the stress state in the warp and fill tows is the
same. The maximum predicted failure criterion for the translated model is 30% larger
than the maximum predicted by the extruded model. This is a substantial difference.
Using (14), the translated model will initiate failure at a macroscopic stress level 14%
lower than the extruded model. The normalized stresses indicate that the primary
contributing stresses to the initial failure in the warp tow of the composite are the
shearing stresses, oy, and 0. For the fill tow, the stresses are oy, and o,3.

The normalized o,, stress distributions in the tows are also shown in Figure 12
for the translated and extruded models. The maximum stress predicted by the translated
model is 8% greater than that predicted with the extruded model. This indicates that
parallel tows in the composite are influencing the stresses in this region. Due to the
extruded tows being separated by regions of resin in the cross-over region as shown in
Figure 2, the extruded model predicts a higher strain to initial failure than that predicted
by the translated model.

The comparison of the normalized oy, stress distributions in the warp tows is also
shown in Figure 12. This figure shows that there is a considerable difference in the
predicted stresses of the two architecturess. The translated architecture predicts
approximately 50% greater stress than the extruded at the cross-over region in the 1/8th
sub-cell. The extruded architecture predicts its highest stress in a region away from the
center of the 1/8th sub-cell as shown in the figure. The reason for this is, again, that the
tows of the extruded model are seperated by regions of resin. The oy, stress distribution
is what causes the large difference in the predicted failure of the two architectures.
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Trasverse shear (o, loading)

A o, shear load was applied so thata 1% £,_, macroscopic strain was applied to
to the 454 wanslated model in Figure 5. This lad was.then applied to the 454 extruded
model. The Tsai-Hill criteria is plotted in Figure 13 for these two models. Failure is
predicted to initiate in the resin between the mats as indicated by A in the figure. The
translated model predicts a failure criterion 1.37% less than that predicted by the
extruded model which indicates that initjal failure will occur at essentially the same
macroscopic stress level in both models. The main source of initial failure is the oy,
stress. If the mats were assumed to be simply stacked, a much differenent prediction
would be made for this load case.

Conclusions

The effect of assumed tow architecture, specifically the effect of how a cross-
section is assumed to sweep out the volume of a tow, was studied for a plain weave
composite with symmetrically stacked mats. Comparison of two architectures, translated
and extruded, was made on the basis of predicted moduli and stress distributions.
Results of the analysis show that at a high waviness ratio there is a significant difference
between the two architectures.

It was determined early in this study that to provide an accurate analysis, the
variation of material properties through the elements must be modelled accurately. This
was shown by the convergence of the elastic properties and stress distributions of the
multi-angle method compared to the single angle method. A more refined analysis was
also achieved by reducing the size of the model which needed to be analyzed. It was
determined that only 1/32nd of the unit cell for symmetrically stacked mats need be
analyzed. Very dramatic computational savings were obtained by this reduction.

The differences in the tow architectures revealed several drawbacks and
advantages of the translated and extruded models. The translated model thins at high
waviness ratio which is unrealistic; however, the mesh generation of the translated model
is algebraic. The extruded model does not thin at high waviness but at the cost of
complicating the mesh generation. The extruded model also includes thin matrix layers
between the warp and fill tows which the translated does not. The significance of this
was not determined.

Of the three waviness ratios studied, the largest difference was observed at the
highest waviness, WR=1/3. Very little difference between the translated and extruded
architectures was observed at the other two waviness ratios. Two of the loading cases,
extension in the warp direction and in-plane shear, indicate that there is a significant
difference between the two architectures. Extension in the warp direction indicated a
significant difference in the predicted extensional moduli, E_, and in the load to initial
failure. In-plane shearing showed a significant difference in the stress state in the cross-
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over region. The third loading case, transverse shearing, showed little difference in the
predicted moduli and stress distributions due to how the mats are assumed to be stacked.
If the mats were assumed to be simply stackei instead of symmetrically stacked more
difference might be noted in transverse shearing as well as extensional loading.
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Table 1: Boundary conditions for 1/32nd sub-cell for extension, transverse shear and in-
plane shear loadings.

Macroscopic extension: l

"(-%J.Z) =U, v(x,g,z) =V, w(x,y',t-%)awo

u(0.y,2)=-u(0,y,-2) w0,y,2) =v(0,y,-2) w(0,y,2)=-w{(0,y,-2)
u(x,0,2)=u(x,0,-2) wx,0,2)=-Wx,0,-2) w(x,0,2)=-w(x,0,-2)

Transverse shear (o,, loading):

C a a
A —_—y= x,_ :0 —— =w
u(x,y,+ 2) +U, W 2,2) w( 2,y,z) A

u(0,y,2) =-u(0,y,-2) ¥v0,y,2)=v(0,y,-2) w(0,y,2)=-w(0,y,-2)
u(x,0,2)=u(x,0,~2) w(x,0,2) =»(x,0,-2) w(x,0,2)=-w(x,0,-2)

In-plane shear (o,, loading):

2 )= 2 v 2)=d 8y N=w(x L )=w(xy,+5)=0
P u(x,z,z)—d V(z,yz) W(z.y,z)%x,z,z) W(x,ytz)

u(0,y,2)=u(0,y,-2) w0y, 0)=W0.y,-2)  W0y,2)=-w(0,y,-2)
u(x,0,2)=u(x,0,-2) (x,0,2)=v(x,0,-2) w(x,0,2) =-w(x,0,-2)
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Table 2: Factors for svathesis of 1/8th sub-cell stresses from 1/32nd sub-cell.

Extension 0, o 0y A O Os
Ql 1 1 1 1 1 1
Q2 1 1 1 -1 -1 1
Q3 1 1 1 1 -1 -1
Q4 1 1

Equations for formation of stresses in quadrants 2,3, and 4 in the xy plane.

02 (~xy,-2) = 0,y S,

o?( -X,~y,2) =0 .1 (x,y,z)f?

o:(x, -y,-2) =0 .l (I,}’Z)f:
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Table 3: Comparison of CPU and memory requirements for three models with same
refinement. Times were determined on an IBM RISC System/6000 POWERstation 355.

Cell Size CPU Time | Elements Memory
(min):(sec) ‘Requirements
(Words / KiloBytes)
| ruuntca | 3705 s12 | 7,9%K/6.456K |
| usmuntcan | o028 64 310K / 2,480K
| uszndunitcen | o:10 16 38K / 304K
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Figure 2: Comparison of translated and extruded architectures.
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Translated Extruded

Figure 11: Comparison of predicted Tsai-Hill failure criterion. zormalized 6y, and
normalized G35 in warp tows of translated and extrZed meshes subjected
to load generated by 1% €, extension of trans!atec model.
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Chapter: 8

MODAL TECHNIQUE FOR THREE-DIMENSIONAL
STRESS ANALYSIS OF PLAIN WEAVE COMPOSITES

ABSTRACT

Textile composites present a unique challenge to the stress analyst due to their large
microstructure. A global/local method was developed which significantly reduces the
computational challenge and retains reasonable accuracy. This method uses homogenized
engineering properties for the global analysis. The nodal displacements from this global analysis
are used to determine the magnitudes of a few fundamental modes. These magnitudes are used
to scale and superpose refined local solutions for these fundamental modes. A stubby

cantilevered plate subjected to end moment and transverse load was analyzed using the proposed
method. The results were quite encouraging.

INTRODUCTION

Plain weave composites coasist of interlaced fiber bundles which are impregnated with a resin
and then cured. It is not practical to discretely model each fiber bundle even when analyzing a
simple coupon. Instead, the analysis is divided into two stages: a global analysis and a local
analysis. The global analysis uses some form of effective constitutive properties. This might take
the form of homogenized engineering moduli or macro elements, which are finite elements
which approximately zccount for the microstructure within a single element [1,2]. To obtain
detailed stress information requires a subsequent local analysis which discretely models the
individual fiber bundles and matrix pockets.

There are many globzi loczl strategies [e.g. 3-6]. A critical step in all of these strategies 1s how
to apply boundary condidons on the detailed local model based on nodal forces and
displacements from a crude global model. In an earlier study, the displacements from the global
model were imposed zlong the entire global/local boundary of the local model. [3] Compatibility
is exactly satisfied by this procedure. However, this procedure resulted in excellent predictions
of the stress distibrdon away from the global/local boundary, but large errors near the
boundary. This paper cescribes a procedure which satisfies compatibility between the global and
local models in an zverage sense. In particular, the magnitudes of a few basic deformation
modes are determinec irom the global analysis and then imposed on the local model. The next
section will describe tie global/local method. Then the cantilevered plate configuration selected
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for this evaluation and the finite element models will be described. Finally, a few results will
be presented which illustrate the advantages of the technique.

DESCRIPTION OF GLOBAL/LOCAL METHOD

Fig. 1 shows a schematic of the global/local procedure. The global analysis was performed using
effective engineering properties. The effective properties for interior cells were determined using
periodic boundary conditions for an infinite array of unit cells. [7]. Because of free-surface
effects [3], the effective properties are different for interior and exterior cells. For the exterior
cells the properties E,, E,, ¥, and »,, were determined using a two unit cell model with free
surfaces at the top and bottom (ie. z= +2 ¢, where c¢= mat thickness).

The nodal displacements from the global analysis were used to determine the magnitudes of the
selected fundamental deformation modes for the region of interest. In this study the region of
interest was simply a 1/8 subcell of a unit cell (referred to herein as simply a subcell) and was
modeled by one of the 20-node elements in the global model. The displacements for the 20
nodes were used to determine the 20 coefficients in a tri-quadratic polynomial fit for each
displacement component. These polynomial curve fits were differentiated to obtain the
magnitudes of the particular modes. In particular, for this study 12 fundamental modes were
selected which were assumed to be constant for a unit cell. There were 6 constant strain modes:
€ > €, €, € , €, and €,,. There were also 6 -flexure modes: €.y €x2 €y € x0 €,x aNd
€,,y- The comma in the subscript indicates differentiation. For example, the mode €, , equals
0%u/0z0x evaluated at the centroid of the unit cell containing the subcell.

Because of symmetry and the invariance in the y-direction for the configuration studied, a
maximum of only 5 were non-zero: €,, €, , €, , €, and €,,. The refined local model was
subjected to unit values of each mode. For an interior cell the modal magnitudes determined
from the global analysis were then used to scale and superpose the interior unit modal solutions
to obtain a refined solution for the selected region. For an exterior cell this procedure was
modified, as described later in this section. This is essentially a higher order version of the
traditional use of micromechanics in a structural analysis. It is not unusual to obtain a global
solution using homogenized properties and then use the calculated global strains with the actual
material properties or a unit cell analysis to determine local stresses. The difference is that
traditionally the unit cell analysis is performed for constant strain modes only. The advantages
of including the linear strain modes will be discussed in the Results and Discussion section.

It should also be noted that different boundary conditions were used to determine the interior and
exterior unit modal solutions. The interior solutions were obtained from a model which assumed
that the cell was buried inside an infinite array of cells. Only one exterior mode solution was
used in this study: €,. The exterior €, mode solution was obtained using a model with two unit
cells through the thickness (i.e. the z-direction) and an infinite number in the x- and y-directions.
That is, there were traction-free surfaces at z= +2 c. The possibility of more free surfaces was

not considered in this effort. Since the exterior €, mode also contains an €, component, it was
necessary to account for this contribution when determining the magnitude of the pure €, mode
to superpose. If one defines v,, to be the average Poisson’s ratio for an exterior cell, then the
modified €, mode is (¢, from the global analysis) - v,, (€, from the global analysis).
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CONFIGURATION

This section describes the cantilevered plate configuration and the finite element models selected
for this initial evaluation of the global/local method. A simple three dimensional configuration
was selected so that refereace solutions could be obtained using conventional finite element
modeling. Fig. 2 shows the configuration considered. The cantilevered length (x-direction) was
1.5 times the thickness. The plate was infinite in the y-direction. The nominal curvature in the
y-direction was restrained to be zero by imposing zero normal displacemeats on the planes y=
+\/2. The fiber tows were assumed to follow a sinusoidal path. The ratio of the tow wavelength
to the mat thickness was 1/3.

Two load cases were considered: constant moment and transverse end load. For both cases
v(x, +N/2,z) = 0. The other boundary conditions are as follows:

Constant moment case: u(0,y,z) = 0 u(GA, y,2) = .0l z w(0,0,0) = 0

Transverse end load: u0,y,z) = v(0,y,2) = w(0,y,z) = 0
Traction in the z-direction on the plane x= 3\ was -16 MPa.

Figs. 1 and 2 show the meshes used for the reference solution and the global and local models
for the global/local analysis. All of the models used 20-node solid elements. The global/local

analysis uses far fewer elements and degrees of freedom. The difference would be even greater
if more refined models were used.

The material properties used for the fiber tows and matrix pockets are shown in the following
table.

Tow Matrix Homogenized properties
modulus streagth” modulus  strength” modulus(I.C.)  modulus (E.C.)

E, 206.50 GPa 1034/-689.5 MPa 3.45 GPa 103.4/-241.3 MPa 29.45 GPa 24.97 GPa
E, 5.17 GPa 41.37/-117.2 MPa 3.45 GPa 103.4/-241.3MPa 29.45 GPa 24.97 GPa
E, 5.17 GPa 41.37/-117.2MPa 3.45GPa 103.4/-241.3MPa  4.80 GPa 4.80 GPa
Vi 0.25 0.35 0.09 0.16

Vi 0.25 0.35 0.94 0.99

vy 0.25 0.35 0.94 0.99

G, 2.39 GPa 68.95 MPa 1.28 GPa 89.6 MPa 1.96 GPa 1.96 GPa
G, 2.39 GPa 68.95 MPa 1.28GPa 89.6 MPa 2.64 GPa 2.64 GPa
Gy, 2.39 GPa  68.95 MPa 1.28 GPa 89.6 MPa 2.64 GPa 2.64 GPa

I.C. = interior cell * Tension/compression strength
E.C. = exterior cell

RESULTS AND DISCUSSION

Stress distributions were determined for a cantilevered beam using a traditional finite element
model using the proposed global/local procedure. Two subcells were examined in detail for each
load case. One was in the interior and one was on the exterior of the plate. These subcells are
shown shaded in Fig. 2. The stresses were normalized by the allowable for each stress
component and the locations and magnitudes of the largest normalized stresses were identified.
These normalized stresses can be considered failure indices for a maximum stress failure
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criterion. The table below summarizes the results for several of the larger values.

Table 1. Summary of predicted critical locations.

] interior cell (G/L prediction) exterior cell (G/L prediction)
I location I oy | FL | %e| %e, | location | o; | FL | %e| %e
Coastant Moment | warptow | o,, | 0.807

-100 § warptow | o, | 2.628| -5 | -25

|wuptow oy | 0.605 -100 § warp tow | oy | 1.927] -12] -31

l matrix | oy | 0.573 -100 | filitow | o |1.035|-32| -26

Iﬁlltaw op | 0.365 -100] matrix | o |1.000] 9| -10

matix | oy | 0273 -100 | fwow | o, 0607 17| 41

nwijljlolJ]ojeoljo) e

Transverse End Load | warp tow 6, | 1.440 -7 Hwarptow o5 |278| 22| -3

warp tow oy 1.097 | 4 22 || warptow | o5; | 2.099] 16 | 48

matrix o5 | 1.000| -2 -4 fill tow oy | 0.778] 37 25

matrix § oy [0490| -1 | -76 § matix | o, |0574| 13] 7

fill tow o, 0368 1 1 matrix o, |0548] -10] -41
g; = actual stress component

F.I. = failure index = actual stress/allowable stress.

%e = error in the G/L prediction (linear modes included) w.r.t reference solution.
%e, = error in the G/L prediction (only constant modes) w.r.t reference solution.

In the table, the location is given as warp or fill tow or matrix pocket. Subsequent contour plots
will give a more precise indication of the location of the largest failure indices. For both load
conditions and subcell locations the normalized 0,5 and 03; were largest and the largest values
were in the warp tows. The errors were zero for the interior subcell for the constant moment
load case. This was expected. For the transverse load case the errors tended to be significantly
smaller for the interior subcell that for the exterior one. The most critical failure indices were
predicted very well for the interior subcell. Although the predictions were not as good for the

exterior subcell, the predictions were generally much better than if only constant modes had been
used.

Figs. 3 and 4 show normalized stress contours for the interior and exterior subcell warp tow for
the transverse end load case. The most critical locations were in the warp tow and the critical
stress components were 033 and 03, so that is what is shown. The location and magnitude of
the peak values are labeled. The figures show that the global/local procedure predicts the

location of peak stress and the distribution quite well for the interior subcell and reasonably well
for the exterior subcell.

SUMMARY

A global/local procedure was described for analyzing textile composites. The procedure would
be equally applicable for other materials for which a characteristic unit cell can be identified.
The initial evaluation of the method showed the technique is quite promising. It should be
noted that in this study, a simple configuration was studied. Further evaluation is needed for
more complex configurations. The major obstacle is obtaining reference solutions for complex
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configurations. In fact, even for the current study only very coarse meshes were used for the
reference and local solutions in order to limit the number of equations involved. For this reason,
this paper did not discuss the significance of the stress components, but instead concentrated on
showing that the proposed global/local technique predicts the same trends as a similarly refined

traditional analysis. However, the global/local technique is far less costly than a traditional
analysis.
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Figure 2 Schematic of woven composite plate.
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Reference solution Global/Local

Figure 3 Comparison of predicted normalized stresses for warp tow in
interior subcell for transverse end load case.
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Refereace solution Global/Local
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Figure 4 Comparison of predicted normalized stresses for warp tow in
extenor subcell for transverse end load case.
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Chapter: 9

Effect of Various Approximations on Predicted Progressive Failure
in Plain Weave Composites

Abstract

Three-dimensional finite element analysis was used to simulate progressive failure of a plain
weave composite subjected to in-plane extension. The loading was parallel to one of the tow
directions. The effects of various characteristics of the finite element model on predicted
behaviour were examined. The predicted behavior was found to be sensitive to quadrature order,
mesh refinement and the material degradation model. Also the sensitivity of the predictions to the
tow waviness was studied. The predicted strength decreased considerably with increased
waviness. More numerical studies and comparisions with experimental data are needed to
establish reliable guidelines for accurate progressive failure prediction.

Introduction

Textile composites consist of interlaced tows (fiber bundles) which are then impregnated with
a matrix material and cured. Figure 1 illustrates the architecture for a plain weave composite. The
interlacing of the tows offers the potential for increased through-thickness strength. There is also
the potential for reduced fabrication costs, since fairly complicated shapes can be formed using
textile machinery. One disadvantage of textiles is the difficulty in predicting their performance.
The complex geometry makes detailed stress analysis quite challenging. The early analyses were
based on modified laminate theory. ( e.g. References 1,2) In recent years there have been a few
attempts to discretely model the fiber bundle architecture and predict internal stress states. (eg.
References 3-11) Reference 11 presented a particularly interesting progressive failure analysis of
a plain weave composite. The results in Reference 11 consisted of nominal stress-strain curves.
The response of the composite was almost linear for in-plane extension and highly nonlinear for
in-plane shear. The nonlinearity was primarily a result of progressive damage. However, little
information was provided on damage evolution and load redistribution within the composite
during the loading process. Also, there was no indication of the sensitivity of the predictions to
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mesh refinement or other approximations inherent in such analyses.

This paper has two objectives. The first is to evaluate the seasitivity of predicted progressive
failure to quadrz ture order, mesh refinement, and choice of material degradation model. The
second objective is to describe the nature of the progressive failure process for two weaves with
very different waviness. Loading consisted of a nominally uniaxial stress along one of the fiber
tow directions. Only mechanical loads were considered in this study. To simplify the respoase the
composite was assumed to consist of an infinitc number of identical unit cells in all three
coordinate directions.

The following sections begin with a description of the basic theory used for progressive
damage modelling. Then the configurations will be described. Finally the results from the
numerical simulations will be discussed.

Theory

There is no “right” way to model damage evolution in a textile composite that is also
practical. It is not feasible to discretely model all of the damage, so approximation is unavoidable.
Perhaps the simplest procedure to account for damage in a finite element model is to modify the
constitutive matrix at the quadrature points of a numerically integrated finite element. If history
effects are not included, the analysis of the loading becomes a series of elastic analyses. Of
course, there are many possibilities for how to modify the constitutive matrix. Three techniques
were used herein. The first method considered the material totally failed (ie. the entire constitutive
matrix was reduced by 3 orders of magnitude) when any allowable stress component was
exceeded. This method will be referred to as the non-selective discount method. The second
technique selectively reduced the rows and columns of the constitutve matrix C (where 0=CE)
according to the particular stress allowable which was exceeded. For example, if the third stress
component exceeded the allowable, the third row of C was set to essentially zero (reduced by 3
orders of magnitude) to eliminate that stress component. To keep the constitutive matrix
symmetric, the third column would also be set to zero. Zeroing the column has the undesirable
side effect of stiffening the material with respect to the other stresses. This degradation method
based on setting rows and columns of C equal to zero will be referred 10 as the selective RC
method. The third technique selectively reduced the engineering moduli according to the
particular stress allowable which was exceeded. Except as noted, this technique was used in the
analyses. This technique will be referred to as the Blackketter method.(see Reference 11)

The progressive failure analysis begins with a linear analysis of the undamaged configuration.
Based on the calculated stresses, the initial load was scaled back so that failure would occur only
at points which were within two percent of the maximum normalized stress. ( The stresses were
normalized by the respective strengths.) The constitutive matrix was modified at the failure points.
Residual forces were calculated and used to determine the incremental displacements. The total
displacements were updated and used to determine the new suesses, which were then used to
predict further failure. If no further failures occurred at the current nominal strain state, the
nominal strain was incremented to cause failure. This procedure was repeated until the nominal
strain exceeded one percent.

Configurations

The fiber bundles or tows in the models were generated by trznslating a lenticular cross-
section along a sinusoidal path. The waviness ratio is defined to be the ratio of the woven mat
thickness to the wavelength. The weave consists of warp and fill tows oriented perpendicular to
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each other. In general, the warp and fill tows could be different in terms of material and shape. In
this study they were assumed to be identical. More details about the mesh geometry can be found

in Reference 9. The foll swing subsections describe the finite element meshes, the boundary
conditions, and the material properties.

Finite Element Meshes

Symmetry in the material and loading was exploited so that only 1/32 of a unit cell had to be
modeled. A wide range of mesh refinements were used, as shown in Figure 2. The crude mesh had
only 4 elements and 42 nodes. The most refined mesh had 192 elements and 1049 nodes. The
elements were 20-node hexahedral elements. Since only 1/32 of the unit cell was modeled, these
refinements correspond to full cell models with 128 to 6144 elements.

Boundary Conditions

The periodic boundary conditions for a complete unit cell are quite simple. The appropriate
boundary conditions for a 1/32 unit cell are a bit more complicated. Derivation of the periodic
boundary conditions is somewhat tedious, so details will not be given here. Details can be found
in Reference 9. The periodic conditions are listed below. Figure 2 shows the coordinate system
assumed.

u(a/2,y,z) = W v(x,3/2,z)
u(0,y,z2) =-u(0,y,-z) v(0,y,2)
u(x,0,z) = u(x,0,-z) v(x,0,Z)

constant w(x,y,c/2) = constant
v(0,y,-2) w(0,y,z) =-w(0,y,-2)
-v(x,0,-2) w(0,y,2) = -w(0,y,-2)

nnu

The load was controlled by specifying the magnitude of u,. This corresponds to uniform uniaxial
extension in the warp tow direction.

Material Properties

The unit cell contains two “types” of materials: the tows and the matrix pockets. Relative to
the material coordinate system, the properties of the tows are invariant (before damage occurs). Of
course, the properties of the tows are needed in the global coordinate system. Fourth order tensor
transformation formulas were used to perform the required calculations. The rotation angles to be
used in these formulas were specified at each quadrature point by using interpolation. This
procedure was shown in References 8 and 9 to be preferable to using a single angle for the entire
element. The particular properties used are listed below. These properties, which are
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representative of AS4/3501-6 graphite/epoxy, are from Reference 13.

Modulus Strength Modulus Streagth

E, 15427 GPa  2342.0 MPa 345 GPa 84.85 MPa
E, 1080 GPa 56.6 MPa 345 GPa 84.85 MPa
E;; 10.80 GPa 56.6 MPa 345 GPa 84.85 MPa
G,, 747 GPa 48.7 MPa 1.28 GPa 101.00 MPa
G,; 747 GPa 487 MPa 1.28 GPa 101.00 MPa
Gy 3.33 GPa 48.7 MPa 1.28 GPa 101.00 MPa
Vlz 0.28 0.35

vi; 0.28 0.35

vy 034 0.35

Results and Discussions

Most of the results in this paper illustrate the effects of characteristics of the finite element
model on the progressive failure prediction. The effects of quadrature order, mesh refinement, and
material degradation strategy will be considered first. Then the effect of the tow waviness on
failure behavior will be discussed. Except where indicated otherwise, the results will be presented
for a waviness ratio of 1/3 and for the material degradation strategy iz Reference 11, ( the
“Blackketter method™ ).

Figure 3 shows the effect of quadrature order on the stress-strain curve. The peak stress
obtained using 8 quadrature points (2x2x2) is 3 percent higher than that obtained using 64 points.
The peak stresses obtained using 27 and 64 quadrature points differ by 1 percent. Damage
initiation is predicted 3 percent earlier when 64 points are used. After the large stiffness loss
which occurs at about 0.3 percent strain, there are even larger differences in the predictions. In
Reference 12, non-selective discount was used for the same configuration. The difference in the
peak stress obtained using 8 and 64 point quadratures was 10 percent. Hence, the sensitivity of the
predictions to quadrature depends on the degradation model. The sensitivity to quadrature order
is not suprising. For example, when more quadrature points are used. the more exteasive
sampling is more likely to find the extremes in the stress field. One might expect a refined mesh
to exhibit less sensitivity to quadrature order than a coarse mesh. For the meshes considered in
this study, this was the case. Also, when failure occurs within an element, and the constitutive
matrix is modified, the element becomes inhomogeneous. The numerical integration effectively
fits a polynomial function to the variation of the material properties. Since the material properties
are very different in the failed and unfailed parts of the element, it is difficalt to obtain a good fit
In fact, there is a concern as to whether the assumed quadratic displacement functions for a 20-
node element are sufficient to obtain a reasonable approximation regerdless of the integration
order.

Figure 4 shows the effect of mesh refinement on the predicted stress-strain curve for the two
waviness ratios. The four-element model predicts the correct trends, but is quite inaccurate. The
error in the peak stress is much worse for larger waviness ratio. The peak stress and
corresponding strain for a coarse mesh is larger than for a refined mesh, best the peak stress and
corresponding strain for a moderately refined mesh are not necessarily bound by the extreme
cases of mesh refinement. (see Figure 4b) The peak stress and the corresponding strain decrease
with increased waviness. The ratio of the initial damage stress to the peak stress and the
corresponding ratio of strains increase with decrease in waviness ratio. That is. not only is the
strength reduced by increased waviness, but there is also earlier darnage initiation relative to the
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peak stress. After the peak stress is reached, there is a precipitious drop in stress with little change
in strain. For the 1/3 waviness ratio and a coarse mesh, this “collapse” actually occured in stages,
with a small strain increase between the stages. For the most refined model the collapse occurred
in a single stage. For the 1/6 waviness ratio the collapse occured in a single stage for all three
mesh refinements. It should be noted that in real specimens there would be a distribution of
strength in the various cells. Accordingly, the nominal stress-strain curves would not be expected
to have such deep jogs. Also, it would not be possible to impose displacement or load control for
the individual cells. Load redistribution and the stability of the damage growth would determine
whether the nominal stress-strain curve would appear brittle or there would be significant
nonlinearity before total fracture.

Figure 5 shows damage volume versus the nominal strain for the warp and fill tows for four
mesh refinements. Damage volume for the resin is not shown since there is almost no damage.
The curves are quite close for the 108 and 192 element meshes, which suggests that the curves
might be close to convergence. As the mesh is refined, the increments in damage volume become
smaller , but more numerous. The damage volume just after collapse tends to decrease with mesh
refinement for both warp and fill tows. This is not surprising since the corresponding strain is also
smaller. The curve for the 192 element mesh in Figure 5a has points labeled A and B. From A to
B the damage initiation and growth was dominated by the inter-tow normal stress G33. The sudden
increase in damage at point B was due to the stress component 63 ( the x; direction is parallel to
the fibers).

The damage volumes just after the peak stress is reached is as follows
Waviness Ratio. Warp Fill  Percent Stiffness Loss '
1/6 76 .88 41
173 41 21 45
Interestingly, the damage volume is larger for the 1/6 waviness ratio, but the percentage stiffness
loss is less.

Figures 6 and 7 show the effect of mesh refinement and waviness ratio on damage
accumulation during loading. To plot the damage zones accurately, each element is sub-divided
into 27 blocks, where each block represents the volume associated with a quadrature point. The
black region indicates the damage zone. The stress-strain curve for a particular mesh is shown
above that mesh. The points labeled A,B and C indicate the correspondence between the strain
level and the damage zone. The damage zone corresponding to point A indicates the initial
damage. The damage zones corresponding to points B and C indicate the pre- and post- collapse
damage states. Also indicated are the stress components which contributed to the damage. The
four-element mesh does not model the initial failure well for the two waviness ratios of 1/3 and 1/
6. The 32 element model performs reasonably well for obtaining qualitative results. Further
numerical studies are needed to determine how close the 192 element results are to convergence.
For the 1/3 waviness ratio 633 dominates the initial failure. This initial failure appears to be an
inter-tow failure resembling delamination in laminated composites. The collapse is characterized
by &3 failure in the warp tows. For the 1/6 waviness ratio, the collapse is due to a significant
failure of the warp tow due to 03 and cracking of the fill tow due to ;.

Figure 8 shows the stress-strain curves obtained using the three degradation models described
earlier: non-selective, selective RC, and the Blackketter method. The non-selective method
predicts 22% lower peak stress than the Blackketter method. Selective reduction of rows and
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columns in the constitutive matrix results in a much larger residual stiffness just after the peak
stress than the other two methods. Selective reduction of rows and columns in the coastitutive
matrix also does not result in a large sudden drop in the stress after the peak stress is reached.
Concomitantly, for the selective RC method there is also no sudden increase in the damage
volume after the peak stress is reached. (This is not shown on the plot.)

Concluding Remarks

Simulation of progressive failure in a plain weave composite is extremely compiex.
Consequently, only approximate treatmeat is practical at this time. One of the goals of this paper
was to examine the effect of several approximations on predicted behaviour. One obvious
conclusion from this study is that the predictions are quite sensitive to a number of decisions
which must be made when assembling a finite element model. Further numerical exreriments and
comparisons with experimental data are needed to establish guidelines for accurate znalysis of
progressive failure.

Another objective of this paper was to describe the effect of tow wzviness on dzmage
accumulation. The results suggest that the degree of waviness not only 2Tects the swess at which
damage initiates, but also the type of damage which occurs. Also, the stress comporent
responsible for damage changed during the progressive failure process.
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Matrix

Fill tow
Warp tow

(b) Single mat with matrix pockets removed.

Figure 1 Schematics of plain weave composite.
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Mesh 2:

Mesh 1:
32 elements and 221 nodes

4 elements and 42 nodes

Mesh 3: Mesh 4 : ‘
108 elements and 634 nodes 192 elements and 1049 nodes

Figure 2 Finite element meshes used to determine the effect of
mesh refinement on failure prediction.
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Chapter: 1
Part II Software Documentation

Stress Analysis of Woven Composites

(SAWC)

Introduction and Abstract

SAWC refers to a collection of three programs which were developed to expedite the
study of the failure behaviour of plain weave composites. The programs are a mesh generator
(PWMeshGen), a finite element program (Flex94), and a graphical pre- and postprocessor
(Plot95).

The primary capability of the software is the generation of solid models of plain weave
composites from a few input parameters, the analysis of the solid model, and the display of finite
element meshes before and after deformation and stress distributions. Some first order progres-
sive failure capability is also implemented. The finite element code uses a displacement formula-
ton. It includes isoparametric 20-node elements and special “macro” elements which can
account for microstructure within a single element.

The input data for the mesh generator is a form, which is generated automatically. The
user simply fills in a few blanks in the form with any text editor and then runs the program. The
finite element program requires a complex collection of input data. Fortunately, the mesh genera-
tor provides most of the data. The plotting program was originally developed using a 2D graphics
library and a painter’s algorithm to manage hidden line removal. Hardcopy of the display is
obtained by writing a PostScript file, which is then printed. Although the program now uses the
openGL graphics library (which has built-in hidden line removal), 2D primitives are still used.

The programs are written in a combination of C, C++, and Fortran 77. The programs
were developed on an IBM RS/6000 using the AIX (IBM UNIX) operating system version 3.2.5.
However, PWMeshGen and Flex94 should port easily to any Unix workstation. The plotting pro-
gram, Plot95, uses the graphics library openGL. and the Motif user interface. The openGL library
and Motif user interface is available on major workstations.

This software can be installed on a workststion without root (super user) access.

This manual contains four sections: one section for each program and then a final section
which describes installation of the software and sample files.

Listed below are papers which describe the theory and example application of the software.
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1993.

Whitcomb, J., Woo, K.: Application of Iterative Global/Local Fini ¢ Element Analysis Part II -
Geometrically Nonlinear Analysis. Communications in Numerical Methods in Engineering.
Vol. 9, pp. 757-766, 1993.

Whitcomb, J.D.; Woo, K.; Gundapaneni, S.: Macro Finite Element for Analysis of Textile Com-
posites. Journal of Composite Materials. Vol. 28, pp. 587-681, 1994.

Woo, K. and Whitcomb, J.D.: Macro Finite Element Using Subdomain Integration. Communica-
tions in Applied Numerical Methods. Vol. 9, pp. 937-949, 1992.

Whitcomb, J., Woo, K.: Enhanced Direct Stiffness Method for Finite Element of Textile Compos-
ites. Accepted for publication in Composite Structures.

Whitcomb, J.; Kondagunta, G.; Woo, K.: Boundary Effects in Woven Composites, accepted for
publication in Journal of Composite Materials.

Whitcomb, J. and Srirengan, K., Chapman, C.: Evaluation of Homogenization for Global/Local
Stress Analysis of Textile Composites. Presented at theAIAA/ASME/ASCE/AHS/ASC 35th
Structures, Structural Dynamics, and Materialsconference, Hilton Head, South Carolina, April
18-20, 1994. Submitted to Journal of Composite Materials.

Whitcomb, J. and Srirengan, K.: Simulation of Progressive Failure in Plain Weave Textile Com-
posites. Proceedings of the International ME’94 Congress and Exposition.

Notice of Restrictions

The Motif interface was developed using AIXwindows Interface Composer. This pro-
gram generates Motif code which is than compiled and linked with the other parts of the Plot95
program. Appropriate copyright notices for the software generated are shown below.

~
*

COMPONENT_NAME: AIC AIXwindows Interface Composer
ORIGINS: 58

Copyright IBM Corporation 1991, 1993
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of IBM not be

IR IR N R B N N I R I R
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used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

IBM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING

ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE

OR PERFORMANCE OF THIS SOFTWARE.

RN I R R

/*
* $Date: 93/04/26 21:05:25 $ $Revision: 2.19 $

*

* * *

Copyright (c) 1992, Visual Edge Software Ltd.

*

* ALL RIGHTS RESERVED. Permission to use, copy, modify, and
* distribute this software and its documentation for any purpose

* and without fee is hereby granted, provided that the above

* copyright notice appear in all copies and that both that

* copyright notice and this permission notice appear in supporting

* documentation, and that the name of Visual Edge Software not be

* used in advertising or publicity pertaining to distribution of

* the software without specific, written prior permission. The year

* included in the notice is the year of the creation of the work.
* */

/*
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Chapter: 2
User’s Manual for PWMeshGen

(Plain Weave Mesh Generator)

A collection of Fortran and C programs were developed to expedite the generation of finite
element meshes for plain weave composites. These programs are currently intended to be run
under the UNIX operating system. However, only a few changes are required for other operating
systems.

The tow path of the plain weave is assumed to be sinusoidal. The user can select between
translated and extruded tows (see Ref. 1). Although several programs are required to generate a
mesh, an executive program has been provided which orchestrates the transfer of data from one
program to the next. Hence, the collection of programs appears to the user to be a single program.
The executive is named PWMeshGen.

To simplify program operation, the input file is a form. This form contains labels which
remind the user of the required data and order of the data. To obtain a copy of the form, simply
execute the program “PWForm” with the command line parameter “filename”, which will be the
name of the generated form. For example, executing the command

PWForm inFile

will generate a file named <inFile>, which is shown in Figure 1. Figure 2 shows a typical finite
element mesh with labels which define the terms in the generated form.

When this file is edited, it is critical than none of the form labels be changed, since the
labels are used to guide input. Once the form is complete the mesh is generated by executing the
command

PWMeshGen inFile

The programs will generate several files, which will be discussed in the next section. Sample data
in the sub-directories “Sample3” and “Sample4” on the distribution media include completed
forms. The file names for these forms are Samples/Sample3/Input/meshl and Samples/Sample4/
Input/mesh2. '

Warning

Early in the mesh generation process there are duplicate node numbers. One of the tools
removes the duplicate node numbers. This tool uses a tolerance to determine whether two points
are coincident. This tolerance is hardwired to be .00001. It can be changed by editing the file
MeshClass.C in PWMeshGen/MeshToolSource. Line 140 is

#define EPSILON le-5
To change the tolerance, simply change this value and recompile.

Output Files:

Several output files are generated. These files are for use with the finite element program
Flex94. The following files are generated during a typical execution:
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File

new.flex
new.sflx
new.as
new.am
mat_list
new.flx

xExtension.mpc

Description

Main input file for Flex94.

Mesh file for Flex94.

Element rotation angle file: single angle.

Element rotation angle file: multiple angle.

A material list of the elements.

A simple mesh file used for plotting the mesh

and determining boundary conditions automatically.

Multipoint constraints for extension in the x direction.

xyShear.mpc Multipoint constraints for in-plane shearing.
xzShear.mpc Multipoint constraints for transverse shearing.
ExtSingleConstraints Constraints for extension
xyShearConstraints Constraints for in-plane shearing.
xzShearConstraints Constraints for transverse shearing.
xExtension.Loads Loads for extension in the x-direction.
xyShear.Loads Loads for in-plane shearing.
xzShear.Loads Loads for transverse shearng.
eighth.fix A simple mesh file for plotting the 1/8th unit cell.
eighth.am Element rotation angle file for 1/8th unit cell:
multiple angle.
eighth.as Element rotation angle file for 1/8th unit cell:
single angle.
References:
1. Chapman, C. 1993. Effects of assumed tow architecture on the predicted moduli and
stresses in woven composites, Master thesis, Department of Aerospace Engineering, Texas
A&M University.
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Input File for Mesh Generation Program

Thickness of mat:

Waviness ratio:

Tow type:

Tow elements in z-direction:
Primary elements in y-direction:
Resin elements above and below tows:

Execution flow flags: Type yes beside functions to be performed.

Generate 1/8 unit cell:
Renumber nodes to reduce profile of stiffness matrix:

Tow type: 1=> extruded
2=> translated

****t******t*tEnd of Input Flle For Mesh Generatol—****t*i****t*tt*

Figure 1: Form used to define input for mesh generator.
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1 Resin Element

above and below

tows ’ \ v ‘
\

2 Tow Element s ) P
in z-direction in y-direction

4 Primary Elements

Figure 2: 1/8th unit cell created with PWMeshGen.



Appendix A: Use of output files with Flex94

The files generated using PWMeshGen are used in conjunction with the finite element
program Flex94 and the mesh plotting program Plot95. The file new.flex is the main input file for
Flex94. An example of this file is shown in Figure Al. This example specifies that the mesh
new.sfix will be subjected to extension in the x-direction as indicated by lines 6, 26, and 29. Mod-
ifications for other load cases are given below:

For in-plane shear, these lines would need to be changed as follows:
6 ‘xyShearConstraints’

26 ‘xyShear.mpc’

29 ‘xyShear.Loads’

For transverse shearing, these lines would need to be changed to:
6 ‘xzShearConstraints’

26 ‘xzShear.mpc’

29 ‘xzShear.Loads’

And finally, for extension in the z direction, the lines would be:
6 ‘ExtSingleConstraints’

26 ‘zExtension.mpc’

29 ‘zExtension.Loads’

Note that ExtSingleConstraints is also used for extension in the x-direction.
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15
16
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20
21
22
23
24
25
26
27
28
29
30
31

4 3

'Title Here'
‘alternate_input’
‘new.sflx"’
‘alternate_input'
‘ExtSingleConstraints'
‘end_mesh_input’

'3dl

1

206.9e9 5.171e9 5.171ed

2
0

.45e9 3.45e9 3.45e9
*end:T300/5208"
'end_material_input'

‘loop!

5
0
3
3
0

O W N
oOwwn B
O RN LT
O B

'end_pick'
‘alternate_input'
‘new.am'
‘alternate_input'
'xExtension.mpc’
'end_of_misc_options’
‘alternate_input’
‘xExtension.Loads'
‘end_loads'

‘end’

.171e9 206.9e9 5.17149

.35

.25 .25 .25 2.386e9 2.386e9 2.386e9 0 0 C 0 00O

.00625 .25 .25 2.386e9 2.386e9 2.386e9 0 0 0 0 O

.35 .35 1.28e9 1.28e95 1.28e9 0 0 0 0 00O

Figure Al: Typical new.flex file generated with PWMeshGen.
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Chapter: 3

FLEX94
User’s Manual

Command: fe size

Comments: size = maximum number of terms in global stiffness matrix. If size is omitted, a
default size is assigned by the program. The default size is 1500000.

The analysis of an infinite array of unit cells only requires a single mesh. Such analysis is
useful for determining homogenized engineering properties and stress (or strain concentrations).
Such analysis proceeds much like traditional finite element analyses except that the boundary
conditions are fairly complicated. Utilities have been developed to automatically generate the re-
quired boundary conditions for various load conditions.

Global/local techniques were developed as part of this research project. There are many
possible global/local methods. The ones evaluated used macro elements (Refs. 1-3) in the global
mesh and ordinary finite elements in the local mesh. Two types of macro elements are supported:
single field ( Refs 1, 2) and multi-field (Refs 3). After a global analysis is performed using macro
elements, the detailed stress distributions within a weave unit cell are determined using displace-
ments or forces from the global analysis to determine the boundary conditions for the local mod-
els, which include details of the weave architecture. The global/local analysis software was not
sufficiently automated to release it as part of this software. However, the macro elements are in-
cluded in the finite element program. Reference 4 discusses one of the more promising proce-
dures evaluated.

The input file for Flex94 can be broken into several blocks which must appear in the fol-
lowing order:

1. Mesh Input

2. Material Properties

3. Macro Element Input (Optional)
4. Miscellaneous Options

5. Loads

6. Macro Element Data

7. Failure Analysis

A description of each block is given in the following sections with an example.
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‘analysis_type’
‘LINEAR’
‘end_options’

43 2
'Small Mesh’

‘alternate_input’
'sml.msh’

Example:

'standard_input’

’coordinates’
102 2

1-15 -15
2 -15 -13
3-13 -5
4 -11

101 15 13
102 1.5 1.5

‘connectivity’
141234
2 42336
344876

42 4 97 9599 100
43 4 100 99 99 101

‘define_element_type’

243 1431

0000

1. Mesh Input

L e
This option allows the user to define the analysis type.
‘LINEAR’ selects linear analysis. This has to be reptzced
by ‘SELECT for Selective discount method or by ‘NSELECT
for Non-Selective discount method.
NumberOfElements DegreesOffreedomPerNode
Title - Must be in single quotes.

This option allows user to put mesh in another file. Filename must
be on the following line. Atend of file 'sml.msh’, 'standz-d_input’
should be used to return to original file. ’alternate_inpu~ can only
be used in the original Flex94 input file (eg. you could nat use the
command in 'sml.msh’)

Descrintion:

If 'alternate_input’ was used, 'standard_input’ would retum input to the
original input file. 'standard_input’ can only occur where a comwmnand is
appropriate. For example, it could not appear in the micdle of reading

coordinates.

Command to signal start of coordinates.
NumberOfNodes NumberOfCoordinateDimensions
NodeNumber Coordinates

Command to signal start of connectivity.

Element# NumberOfNodesinElement Connectmty

Connectivity must be specified in clockwise order for 2D elements. For
20-node 3D elements, the order of the nodes is shown in Figure 1.

Command to start element type definition.

ElementType FirstElement LastElement increment (I this case, ele-
ments 1 throught 43 are of type 243).

End with four zeroes. The relevant element types are isted below:

243 2D element

300 3D element
851-899 single field
801-849 multi-field
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'select_quadrature_order

21431
0000

'single_constraints’
4010

Command to start selection of quadrature order for each element.
QuadratureOrder FirstElement LastElement Increment
End with four zeros. To obtain stresses, a quadrature order of

2 for 2D and 3 for 3D has to be used.

Command to set single constraints on individual nodes.
NodeToConstrain ConstraintDoft ConstraintDof2 ...

41 1 1 == Constrain Dof

18 0 1 0 == Don't Constrain Dof

102 1 1 Note: The number of constraints at each node must be equal to the
100 0 1 number of Dof per node which was set at the beginning of the
10110 mesh block. Example shown is for 2 Dof per node.

000 End with zeros.

‘plane’ Command to set constraints on a plane.

1-151 idir coord jcon

1-152 idir = direction of normal to plane in (x1,x2,x3) space
2152 coord = coordinate of plane

2 -151 jeon = restraint direction

000 end with zeros

'end_mesh_input’ exit this input section

2. Material properties

This section defines the material library and which elements have which material proper-
ties. Flex94 was designed to handle various types of constitutive definitions (eg. 2D, 3D, proper-
ties for a beam, etc.) However, for textile analysis only one option is relevant - *3D’. This option
requires the 3D elastic properties to be given as shown below. For 2D analysis the 3D properties
which are input are used to determine the 2D properties for plane strain analysis.

3D’ Command to start reading of 3D material properties.

1 Material group number used later in assigning properties to elements.
206.9e95.171e95.171e9 Young's Modufi (E,y Ex Ea)

.25 .25 .25 Poisson’s Ratios (v|; v|3 va3)

2.386e9 2.386e9 2.386€9 Shear Moduli (G12 G13 st)

o Rotation about z-axis (z-axis is out of plane for 2D problems)
000 (thermal expansion coefficients...not used or implemented)
000 (moisture expansion coefficients...not used or implemented)
2 Next material group

5.171e9 206.9e9 5.171e8

.00625 .25 .25

2.386e9 2.386e9 2.386e9

0000000

3

3.45e9 3.45e9 3.45e9

.35.35.35
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1.28e9 1.28e9 1.28e9

0000000

0 Give zero as material group number to end input.
‘end_material_input’ End input of material properties

"loop’ Command to start specifing material group.

31431 MaterialGroupNumber FirstElement LastElement Increment
12434

13434

0000 End with zeroes

‘end_pick’ End selection of material properties for eiements

Comments: For a mesh consisting of macro elements only, there is no need to input material
properties. (It will do no harm, but the data will not be used.) Hence, the following lines are suf-
ficient for the material property section.

‘end_material_input’
‘end_pick’

3. Macro Element Input

Most of the data for macro elements will be specified in another file, as described shortly.
The following must be included in the main input file if macro elements are being used.

'read_macro_mesh’ Command to start reading of macro element mesh.
851 macro element type 851-899: single field
801-849: multi-field
103 95 2 NumberOfNodes NumberOfElements NumberOfDimensions
2 NumberOfDofPerNode
2500 500 length of connectivity array  length of coordinate array

Minimum requirements are:
Connectivity: numberOfElements * {(numberOfNodesPerElement + 8)+1
Coordinates: numberOfNodes * numberOfDimensions + 2

12 number of elements in macro element submesh
2 number of degrees of freedom per node in macro element submesh
‘title’
"alternate_input’
‘name’ name of altemate input file

(what is in this file will be described in section “6”)
Repeat above commands of section 3 for each type of macro element

to be used.
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“initmacro’

1 2

NumberOfMacroElementTypes
List of elements which need to be initialized

4. Miscellaneous Options

Element Material Rotation Angle: For the analysis of textile composites, the material proper-
ties of the elements making up the tow are the same in the material coordinate system. These
properties must be transformed to the global coordinate system. Flex94 allows the user to specify
the angular orientation of the elements. For 2D, the user can specify the angle of rotation for an
entire element only. For 3D, however, Flex94 also allows the user to specify the angle of rotation
for each node in an element. The angle of rotation may be specified using three different com-
mands: 'angles2d’, 'angles3d’, and "angles_multiple’. The angles are specified in terms of de-

grees.

Example:
‘angles2d’
1 0.00

2 5.17892
3 1028684
4 15.34983

42 -5.17892
43 0.000

Example:
‘angles3d’
11 0.00
2 2 5.857
3 3 6.449

42 1 0.00
4322.48

"angles_multiple’
1220
6.724570
7.294361

4.009413
0.000000
2120

L e

Command allows the user to specify the angles for a 2d analysis. When
using this option, angles specify the rotation about the z-axis.
(Out of plane.) Angles must be specified for all elements in the
mesh and are positive for a clock-wise rotation.

ElementNumber RotationAboutZAxis

I !ngu‘pﬂ‘gnc
Command allows the user to specify the angle and axis of rotation for 3D

analysis. Again, the angles must be specified for all elements.
ElementNumber AxisOfRotation Angle

Command allows the user to specify the angles of rotation for 3d.
ElementNumber AxisOfRotation NumberOfAnglesForElement
Angle(1)

Angle(2)

;\-ngle(19)

Angle(20)
Angle(n) corresponds to the rotation at the nth node specified
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5.877652 in the connectivity of the element.
0.332992

42 1 20 0.000 0.000 O....
43 2 20 2.489 2.476 24...

It is often more convienient, when specifing the material rotaton angles for elements, to
use 'alternalte_input’ to allow the angles to be kept in another file. When doing this, remember to
put ’standard_input’ at the end of the file to let Flex94 return to the original input file.

Multipoint Constraints: Another miscellaneous option which Flex9+ allows, is the specification
of multipoint constraints. When specifying multipoint constraints, the user must specify a master
node, slave node, the particular degree of freedom (dof) to constrain, azd a difference between the
two dof’s. The particular dof being constrained (ie. the slave node) cznnot have been previously
constrained.

It is also possible to apply a mpc such that the displacement of the slave node dof is the
opposite that of the master node dof. This is done by putting a minus sign in front of the master
node as shown in the following example.

'mpc’ Command to start reading of muttipoint consaints.

2 1 1 0.000 SlaveNode MasterNode DofToConstrain Difference

3 1 1 0.000

4 -1 2 0.150 This line constrains Node 4 dof 2 to the negetive displacement of Node
100 -1 10.000 1 dof 2 plus a difference of 0.150

101 100 1 0.000

102 -120.150

0000 Use four zeros to signal end of multipoirt constraints.

Ending Miscellaneous Options: This command must appear at the end of the Miscellaneaous
Options section. It is shown below.

‘end_of_misc_options' Command to end Miscellaneous Options. (NOT OPTIONAL!)

As stated earlier, it may be more convienient to keep sections of miscellaneous options in
another file. This can be done using ’alternate_input’ with “standard_mput’ as explained in sec-
tion 1.

5. Loads

Various types of loads can be applied with Flex94. Some of these include the specification
of nodal displacements and point forces. All the command options 11 this section are optional.
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‘alternate_input’ may be used at any time where a command can be accepted. Remember to re-
turn to the original input file with "standarZ_input’.

Point Forces: Point forces allow the user to specify the nodal force ata node.

'point’ Command to start reading of point forces.

1 1e7 1 NodeNumbe- Force DofNumberForNode
3 2.345e6 2

87 6.456€8 1

000 End reading -t poirz forces with three zeros.

Displacements: Displacements may also e specified at specific degrees of freedom. In the input
of the mesh in section 1, constraints can de imput. This reduces the actual size of the problem.
Specified non-zero displacements are alsc a type of constraint, but in order to reduce the problem
size, the dof must be constrained in the mzsh section also.

‘displacement’ Command tc start reading of displacements.

1 3.13e-3 2 NodeNumbe- Displacement DofNumberfForNode
1 .025 1

2 0.56e-2 2

87 0.13e-2 1

102 0.13e-2 1

000 End reading =7 displacements with three zeros.

Plane Displacements: Displacements mzy be applied to an entire plane in a particular direction.
This is known as a plane displacement. This option works in conjunction with setting plane con-
straints in the mesh input section.

'planeDisplacement’ Command tc start reading of base displacements.

1-15 .0158 2 CoordinateNumber CoordinateValue Displacement Direction

1 -1.5 .010 1 <—This line ndicates that on the plane x=-1.5 specify a displacement of
2 -20 -013 2 0.01% in the x-direction.

0000 End reading =i base displacements with four zeros.

Linearly Varying Displacements on a Plane: Displacements may be applied to an entire plane
so that the variation of the specified displ:cements changes linearly with the value of the coordi-
pates which are parallel to the plane. For :xample, one may want to specify an x displacement on
a plane x=1.5 which varies linearly with v. Displacements are calculated as d; = ay; + b where a
and b are specified by the user and d; and v; are the calculated displacement and y coordinate at a
specific node on the x=1.5 plane.

173



"inearPlaneDisplacement’ Command to start reading of linearty varying plane displacements.

11512 .1-05 This line specifies that on the plane x,=1.5, a displacement in the x4
2 1511 .01-01 direction given by ¢;=.1 Xg; - .05 is being specified at each
node i on the plane.

000000 End reading of linearly varying plane displacements with six zeros.

To end reading of loads, ‘end_loads’ must be at the end of the loads section.

6. Seperate Input File For Macro Element Data

Much of this file 1s identical to the sections described above. Hence, references will be made to
the sections above rather than repeating all of the details.

Mesh input block.......refer to Section 1:
Comments:
1. Do not input any restraint information.
2. The nodal coordinates must be normaized coordinates (eg. they must range

between -1 and 1.)

Material properties block.......refer to Section 2:
numberOfNodesInMacroElement: The oumber of nodes in the macro element must be
specified. It is not the number of nodes in the submesh.
Miscellaneous options block.......refer to Section 4:
Comments:
1. The material rotation angles for the elements in the submesh is input in this
section. -

2. Do not apply multipoint constraints to a macro element mesh.

7. Failure Analysis

This section describes the data required for progressive failure analysis.

As described in ‘Mesh Input.....section 1,’ the analysis type ‘LINEAR’ has to be replaced with
either ‘SELECT’ or ‘NSELECT" option. The option ‘SELECT" represents the ‘selective discount
method’ and ‘NSELECT’ represents the ‘Non-Selective discount method.” One additional input
file is required. It is named ‘strengthdata’. It contains a list of strength values for each of the
material groups used.
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3 NumberOfMaterialGroups
500 50 50 60 60 60 (tensile strength) G41,020,033.(shear strength) 645,043,023,
-500 -50 -50 (compressive strength)T 441,022,033

When progressive failure analysis is performed, the following additional files are created.
‘stressstrain’ : Data file used to plot ‘nominal stress vs nominal strain’ curve.

1 0.0e6 0.00 ReferenceNumber, NominalStressValue,
2 13e6 0.10 NominalStrainValue (percent)

‘damagefield’: Damage progression sequence is recorded. This file may be used to study the fail-
ure mechanism and used for graphical simulation of failure progression.

11 ElementNumber, MaterialGroupNumber

001043 Each row represents an integration point of the element. Each column

000000 represents a stress component. G11,022.033,012,.013,023 is the order

650000 the stress components for each row. The numbers 1,4, and 3
correspond to the first , fourth and third points on the stress-strain curve.

21

870000

‘fcontour.n’ n = 1,2,..., number of points on the stress-strain curve : This file
contains the contour data required to plot failure contours for each point on the stress-strain curve.
The file format is the same as the stress contours file ‘stress’.
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Chapter: 4
Plot95

User’s Manual

Executable: plot95

The program Mesh.app was used in debugging finite element meshes and postprocessing the
results from finite element analyses. The program was developed for the IBM RS/6000 workst-
stion using the Motif interface and the openGL graphics library. The program should compile
and function properly on other workstations which use Motif and which have the openGL graph-
ics library. However, this is would need to be verified for any particular workststation.

The primary functions of the plotting program are:
1. Plot a finite element mesh.
2. Plot a deformed finite element mesh (ie. with scaled nodal displacements added to
original nodal coordinates.)
3. Plot stress contour lines.
4. Plot stress contour bands.

This program was designed to work with the finite element program “Flex94”. In brief, the
current version of the plotting program supports the following:

Mesh plotting for the following elements
truss
frame
triangular and quadrilateral 2D elements with any number of nodes
20-node hexahedral elements

Contour plotting for the following elements
4 and 8 node quadrilateral elements
20-node hexagonal elements

The following pages describe the use of Plot95. There are two aspects to using the program:
preparation of the input files and interaction with the graphical user interface to obtain the type of
plot desired. This manual will begin with a discussion of the input files followed by a description
of the graphical user interface (GUI).
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Input Files

This section describes the following types of input files:
1. Mesh file
2. Nodal displacement file
3. Contour data file

In each case a fragment of a typical input file will be listed and explained. The actuai input data is

in small type and the comments are in jtalics.

Mesh file:

1941 384 3
1 -75000 -65625
2 -65625 -.75000
3 -75000 -.75000
4 -75000 -65625
5 -75000 -.75000
6 -65625 -75000

numberOfNodes numberOfElements numberOfDimensions
-.5000 node# coordinates (for 2D only xy coordinates are needed.)
-.5000
-.5000
-.4951
-.3750
-4951

element# numberOfNodesPerElement connectivity

1203 4111335323156 1438 34 23 24 27 29 43 40 39 25

22031 32 35 37 112 110 108 33 34 38 111 107 39 40 43 45 120 118 116 41
32011 125 53 63 3635 13 14 54 66 38 27 28 59 61 66 44 43 29

4 2035 36 63 65 124 114 112 37 38 66 123 111 43 44 67 69 128 122 12 45
5 2051 52 147 149 159 64 63 53 54 150 ...

Optional input for mesh file:
world input range of screen coordinate system
0.00 0.00 lowerLeftX lowerLeftY
1.500 1.500 upperRightX upperRightY

(if left out, program will automatically pick coordinates)
inactive deactivate elements ( elements will not be plotied)
1641 first last increment
129 3841 next group 1o deactivate
000 end option with three zeros
active activate elements
24321
000
set colors Set Element Colors
s 1 321 colorindex first last increment

(0<= colorindex<12)

colorindex corresponds to material group number
0000 end with four zeros
elementNodal Values input contour data (see format in Contour Data File Section)
set.values Sets values for each element. Use Shade Elements to view.
32 numberOfColumnsOfData  selectedColumn

1 2.334 4.566 1.13¢9
22567 4.877 1.15¢9

total # of columns = numberOfColumnsOfData+1
If selectedColumn<0, absolute value of data is input.
Range is selected automatically.
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fix.values Fix Values for each element. Use Shade Elements to view.

32 numberOfColumnsOfData  selectedColumn
0 105 minValue maxValue
1 2.334 4.566 1.13¢9 If selectedColumn<0, absolute value of data is input

2 2.567 4.877 1.15¢9

Nodal displacement file:

1 -.79272E-24 .13041E-02 -.42810E-22 nodeNum (u,v,[w]) displacement
2 87106E-02 -.97213E-24 - 43845E-22 (w displacement is optional in 2D)
3 ..12200E-22 - 24332E-23 .10482E-22

4 37197E-22 .11482E-02 -.30051E-02

S .42536E-22 .13039E-22 - 23021E-01

6 .83812E-02 .11663E-22 -.36294E-02

7 .19218E-24 .S4321E-02 .13092E-22

8 .15420E-23 .1087SE-01 -.12807E-22

9 -.14467E-23 .45672E-02 -.52301E-02

10 .11192E-01 .63668E-02 -.49632E-22

Contour data file:
This section may be included in the mesh file or as a stand alone file. To include this in the mesh
file, the option elementNodalValues must be used.

(elermentNodalValues) Only include if in the mesh file.
3 Number of columns
1 Column to be input
fixed (These 2 lines explained in Scaling options. )
4e7 4e7
1 1 elementNumber materialGroupNumber

_1807296E+08 -.3453916E+06 -5935107E+08  There is one line of data for each node in each element.
.1881153E+08 .23793S1E+07 -5971T71E+08

Scaling Options:

A scaling option must be given when the data is read in so that the plotting program will know
how to draw contours. The above data uses the fixed option which allows the user to specify the
minimum value (4¢7 in the above data) and maximum values (4e¢7) when the data is read in. Itis
also possible to specify that the program automatically pick the minimum and maximum values
when reading in the data. There are several options for doing this. These are auto, group, and
active.

- auto tells the program to automatically pick the min. and max. from all of the input data.
There is no extra data necessary for this command.

- group allows the user to specify that min. and max. value be picked from a specific
material group. On the next line, the material group number to scale must be specified.

- active allows the program to pick the min. and max. value from all the active elements.
No extra data is required for this option.

It is also possible to scale the data after it is read in by changing the Data Range fields in the

179



bottom right hand comer of the primary panel. However, the data being read in must still have
one of the scaling options specified in the file.

Interface

The plotting interface consists of several Motif “widgets” or panels. These are shown in Figures
1 and 2. The widgets shown in Figure 1, the main and redraw widgets, appear when the program
is started. These widgets contain a collection of buttons, toggle switches, and text fields. The
operation of each is documented below. Figure 2 shows the menu panels. The one labeled
“Mesh” is the main panel. The “Mesh” panel is activated by using the mouse to select the main
widget (Figure 1) and then clicking the right mouse button. On the IBM one can also press the
F10 special function key to bring up the Mesh panel. The others are activated through the “Mesh”
panel as indicated by the lines joining the panels. The menus are self-explanatory except for the
one labeled “Modify List of Elements to be Plotted”. This panel permits one to remove a collec-
tion of elements or to add them back. There are three methods provided for identifying the partic-
ular elements. These are described below:

1. Modify by Volume: Select elements whose centroids lie within the specified xyz coordi-
nate ranges.

2. Modify by Group Number: Select elements in the specifed group.

3. Modify by Loop List: Select elements “First” to “Last” with an “Increment” or stride. For
example, if First, Last, and Increment are 1,10,2, respectively, then the selected elements will be
1,3,5,7,9.

Description of Buttons, Toggles, and Text Fields on Primary Panel:

Redraw Redraw mesh using current settings.

Zoom In Zoom in on center portion of plot (magnification = 4x).
Zoom Out Zoom out (reduction = 4x). |
Node Numbers Label nodes.

Element Numbers Label elemeats.

Shade Elements Color element according to the specified color group.
Label Intensity Label element according to the specified material group.
FontScale Magnification factor for default font size.

World Coordinates Range of world coordinates in plotting window.
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Rotation Rotation about z,x, and y axes - in that order followed by incremental
rotaion about the z axis. When all angles =0, the z-axis points to the
top of the window and the y-axis points to the right side. A right-
handed coordinate system is used.

Magnification Magnification factor to apply to the nodal displacements.

Use Displacements Click on to plot deformed mesh. Displacements are read in using the
menu option Displacements under Document.

AutoWorld Allows program to automatically specify world coordinates for
window based on size of mesh.

To PostScript File Click on to create PostScript file rather than draw to screen. This
function creates a much smaller file than saving with the default print
command. Greyscale is always output. By changing one parameter
in file, it can be converted to color. (Directions are included in the
PostScript file.) Currently, the output file name is “hardwired” to be

/tmp/out.ps

Monochrome/Color Toggles display between color and greyscale.

Contouring (All options take effect on next Redraw.)
Draw Contours Click on to draw contours.
Label Contours Click on to label contour lines if just Lines selected or draw legend if
Bands are selected.
Lines Click on to draw contour lines.
Bands Click on to draw contour bands.

Outline Elements Click on to draw element bondaries when contouring. Element
boundaries are always drawn when contouring is turned off.

Data Range
Min Lower limit for contour data.
Max Upper limit for contour data.
Comments:

Below the Zoom Out button is an unlabeled text field. It is provided to make it convenient
to specify a particular zoom level. For example, if the initial (ie. when the mesh file is read) hori-
zontal and vertical ranges are 100 and 200 respectively, specifying a zoom factor of .5 will reduce
the ranges to 50 and 100. This will result in a magnified display.
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Chapter: 5

Installation of Source Code and Samples

The distribution media contains the following four compressed tar files:
pwmeshge.z
flex%4.z
plot95.z
samples.z

After copying these files to a UNIX computer, these files must be renamed as
pwmeshge.Z
flex94.Z
plot95.Z
samples.Z
The files can then be uncompressed using the commazd
uncompress *
Next the files in each tar file are extracted using the ccmmands
tar -xvf pwmeshge
tar -xvf flex94
tar -xvf plot95
tar -xvf samples
The following four sub-directories are created in the carrent directory:
PWMeshGen
Flex94

plot95
Samples

Creation of Executables

Change to the directory containing the four sub-directories listed above, then execute the
following commands. The words in italics are comments. not commands.
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Flex94

cd Flex94/Control

make

The executable is named “fe” and is located in the current directory. It may be moved to
any location desired.

cd ..

PWMeshGen
cd PWMeshGen

Change the pathname for PWMESHGEN_DIR in the file makefile.def 1c
the pathname for present working directory.
For example : PWMESHGEN_DIR = /homedjdw/Scratch/srirend/PWMeshGen
Type the command: pwd to obtain the pathname for
the present working directory.

Similarly, change the pathname for PWMESHGEN in the file PWForm
the pathname for present working directory.
For example : PWMESHGEN = /homedjdw/Scratch/srirend/PWMeshGer.

make

The executable is named “PWMeshGen” and is located in the current directory.
The executable should not be moved.
cd ..

Plot95

cd Plot95
Change the pathname for PLOTTER_DIR in the file makefile.def to
the pathname for present working directory.
For example : PLOTTER_DIR = /homedjdw/Scratch/sriren4/Plot95
Type the command: pwd to obtain the pathname for the present workinz directory.

make all
The executable is named “plot95” and is located in the Plot95 director:.

Sample Input

Input and output files for six problems are included. These are in the sundirectories Sam-
plel - Sample6. Comments are included in the subdirectories which describe each sample.
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